

TROMPA: Towards Richer Online Music Public-domain Archives

Deliverable 2.3

Technical requirements and integration
Grant Agreement nr 770376

Project runtime May 2018 - April 2021

Document Reference D2.3_Technical_requirement_and_integration_v1

Work Package WP2 - Project Coordination

Deliverable Type Report

Dissemination Level CO

Document due date 31 October 2019

Date of submission 31 October 2019

Leader 5 - VD

Contact Person Bauke Freiburg (bauke@videodock.com)

Authors Wim Klerkx (VD), Aggelos Gkiokas (UPF), Bauke Freiburg (VD),
Christiaan Scheermeijer (VD), Alastair Porter (UPF), David Weigl
(MDW)

Reviewers Vladimir Viro (PN)

D2.3_Technical_requirement_and_integration_v1

1

Executive Summary

This deliverable is the technical requirements and integration report and specifies the strategies for

technical integration of data generated by different technologies. The initial version includes the

integration guidelines to be followed during the project that will be updated in the final version. The

document is created by merging two earlier working documents (CE API Manual and CE Import

Guidelines). The document is written for a technical audience and should provide practical

information and guidelines for developers and researchers on how to integrate with the Contributor

Environment (CE). It is expected that the document is updated and improved after its initial

submission. The goal would be that at the end of the project, third parties with little background

information on the project understand how they can integrate with the CE based on this technical

documentation.

Section 2 presents the internal data model of the CE is based on base level types of the

schema.org model and a number of schema.org extensions that fit the needs of the TROMPA

project. The default schema.org properties were supplemented with properties derived from well

known ontologies. These supplementary properties express CE needs for metadata, interlinking,

internationalization, and provenance tracking. All nodes in the CE will be either one of the eight

base types from schema.org, namely CreativeWork, Event, Person, Organization, Product, Action,

Place and Intangible. These eight types are extended from schema.org’s ultimate base type Thing

which has a number of properties which are available for all types, and thus all nodes that reside in

the CE. These are properties like description and subjectOf. Each of the eight base types has

supplementary properties that are characteristic for the type and help interlinking it to other nodes.

These are properties like author for CreativeWork or birthDate for Person. Some of the eight base

types are further extended into subtypes. MusicGroup is an extension of Organization, for it has

useful extra properties like album and genre. MediaObject is an extension of CreativeWork for

properties like contentUrl or productionCompany. As MediaObject will probably be the most used

type within the TROMPA project, is further extended with types like AudioObject and

MusicVideoObject. Where the schema.org Types and properties are primarily for expressing

meaningful categories and inter-relations in the CE, an additional layer of metadata properties are

added to provide text fields that allow searches across the TROMPA data set. Adopted from the

Dublin Core Metadata Initiative are the 15 classic metadata terms (DCMES), each added to a

selection of CE internal types as properties accepting String values. These properties are the primary

metadata fields used for semantic searches in the CE: From the Simple Knowledge Organization

System (SKOS) ontology, five of the six mapping properties are adopted to allow equivalence

interlinking. In conjunction, the metadata property language and the schema.org property

inLanguage are used to handle all current internationalization needs. To track the origin of a

resource through its derivative(s), the nine base properties of the PROV Ontology were adopted on

the relevant types: The schema.org Thing type has a standard additionalProperty property, which

allows the extension of any type of node with any number of custom properties. This allows CE users

to express their own data model in the CE, while ensuring the entered data adheres to CE metadata

and interlinking standards. The type property of any thus related node allows to maintain RDF

compatibility for these additional properties.

Section 3 describes the requirements for the data stored in the CE and it provides practical

guidelines on managing data and the metadata model. The primary design concept to keep in mind

is that the CE does not contain direct representations of real-life things, abstract entities or files. For

D2.3_Technical_requirement_and_integration_v1

2

https://schema.org/
https://schema.org/Thing
http://dublincore.org/documents/dces/
http://dublincore.org/documents/dces/
https://www.w3.org/TR/skos-primer
https://www.w3.org/TR/skos-primer
https://www.w3.org/TR/skos-reference/#mapping
http://dublincore.org/documents/dcmi-terms/#elements-language
https://schema.org/inLanguage
https://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
https://schema.org/Thing
https://schema.org/additionalProperty

example, a Person type node in the CE does not represent a person directly, but represents a web

resource that contains information about this person, and only about this person. It is not a problem

that the same person, or the same audio file, is represented in the CE by multiple nodes; this only

means that there are multiple web resources about this entity that are relevant to TROMPA. A

composer might have several dedicated web pages in different public repositories, which all happen

to be relevant web resources to TROMPA. Any data produced by TROMPA participants or users on

the basis of this data will also be stored in the CE. Yet this data also only consists of references to

web resources. In general, each node stored in the CE has to be a reference to a web resource. The

value of any node property can be scalar (string, number, date etc.) or it can consist of one or several

other nodes. Schema.org provides a generic model to interlink the base type entities with a variety

of properties. Between two nodes, a number of relations can exist, each expressing a different or

overlapping semantic relation to the other. It is important to create all such semantic relations

between nodes, as this way it is possible to find the nodes through different types of (semantic)

search queries. While the schema.org types and properties are mainly to provide semantic structure

to the data in the CE, the metadata properties are there to provide for global searches on the basis

of search terms. For this reason, all metadata properties accept scalar type values only. As a general

rule, the metadata properties should in the first place contain information on the thing the web

resource is about. All metadata properties should be written in the same language, and the language

property should be set accordingly. Interlinking between nodes stored in the CE can and should be

done through the default properties provided by the schema.org base types and the extension

selected for the TROMPA project.

When importing a node for which there are already multiple equivalent nodes present, it is

necessary to create bidirectional equivalence relations with all those equivalent nodes. From the

Simple Knowledge Organization System we adopt the mapping ontology that allows to define several

levels of equivalence. Within the TROMPA project, currently six languages need to be supported.

Each node will have the metadata property language, which should be one of the six languages.

When importing data in multiple languages, it is important to create proper exactMatch relations. In

order to allow ordered and unordered lists (or collections) of items to be maintained in the CE

database, the ItemList and ListItem types are supported. Regarding provenance, the CE internal

model supports base level implementation of the PROV-O mechanism to track provenance for data

stored in CE. Between the properties originating from the different ontologies, there are some

apparent redundancies. For now, we prefer to leave all these redundancies in the model, because it

is not yet clear which properties are always to get the same value. In time, we will choose whether

to remove completely redundant properties in favour of one. All nodes and relations used in the CE

internal data model can be traced back to a well-known ontology and have a RDF URI. The aim is to

maintain this RDF compatibility throughout the TROMPA project. In order to ensure consistency in

the data added to the CE by each partner, we provide concrete guidelines about what fields to set

on the object types which we are currently using. Regarding data privacy, the data stored within the

CE’s graph database is assumed to be public in nature, with the creation and interlinking of open

data forming a core focus of the TROMPA project. Nevertheless, certain user data pertaining to

TROMPA will need to remain private, or accessible to only particular specified users. Examples

include private rehearsal recordings that instrumental players or choir singers may wish to listen to

in order to support rehearsal practice. Such requirements will be supported by mandating storage of

non-public data in web-accessible locations outside of the CE, tied into the CE only by reference

(URI). Fine-grained user-based access authorization can then be implemented at the external stores.

D2.3_Technical_requirement_and_integration_v1

3

https://www.w3.org/TR/skos-reference
https://schema.org/ItemList
https://schema.org/ListItem

Candidate technologies for implementation of the authorised external storage include Solid PODS

(“personal online data stores”), and S3 buckets implemented on the Amazon AWS Cognito platform.

Section 4 describes the GraphQL interface of the CE for managing the data. GraphQL is an open

standard API query language that is designed to allow clients flexible API access to datasets but also

to processes, responding either with customized data objects aggregated from data from the

database or from secondary data stores or processes. GraphQL supports three types of

functionalities that are accessible through the GraphQL API interface, namely queries, mutations

and subscriptions. For the CE API, a graphic interface is available that provides a human-friendly way

to interact with the GraphQL API interface and supports rich introspection of the schema. Moreover

it offers an overview for all the ‘custom’ functionalities available, like adding, mutating or deleting

specific node relations. Queries are requests for existing data from the database and can consist of

the Type of entity for which is queried, the conditions and a list of properties to be included in the

response. Mutations are queries that add, update, remove data in the database, or adding /

removing a relation between nodes. Subscriptions are used to run specific algorithms from WP3

items that exist in the CE. The current version (0.4) of the CE-API GraphQL interface does not yet

support authentication. This means that all data can be accessed, changed and added by anybody.

When the (hosted) CE-API is made available to the general public, access control and authentication

will be added. Detailed examples for queries, mutations and subscriptions are provided in this

deliverable.

As described in selection 5 the CE api provides a very basic REST interface. The main purpose of

this REST interface is to provide a unique URL for each node in the CE database and to provide

JSON-LD output. Adjacent nodes in the graph which are related to the one requested will be

included in the response only by reference to their respective REST URL.

Section 6 is dedicated to the integration of jobs and processes in the CE. As described in D5.1

Data Infrastructure and D5.3 TROMPA Processing Library, Music Information Retrieval (MIR)

technologies as developed in WP3, and Crowd-powered improvements as developed in WP4 are

ultimately to be `integrated with the CE. The CE data model in combination with the CE GraphQL

interface enables component and ultimately (pilot) application developers to create nodes in the CE

database that could serve as jobs for WP3 and WP4 technologies to be picked up and processed. In

turn, WP3 and WP4 developers can set up a system to retrieve those jobs, to be executed against

data referenced in the CE. After completion of the job, references to the results can be written back

as nodes in the CE database. Subsequently, relations can be created between those results and the

larger TROMPA data set. A scalable and generic solution is created for Component-CE-WP3/4

integration. This solution, as presented in this chapter, provides a standardised method for task/job

creation and retrieval and allows both components and WP3/4 systems to handle jobs in real time or

in batches in asynchronous fashion. This generic solution comprises of the following steps:

❖ Component user chooses target content, referenced in CE database

❖ Component user creates a job to run a process on this content

❖ Process picks up job

❖ Process executes job on target content, creating and storing a result

❖ Process writes reference to result in CE database

❖ Component picks up result

❖ Component user consumes result

A subscription mechanism, can enable both Component and Process system to be actively updated

on job creation and status updates in real time. This way, the CE becomes the intermediary of

D2.3_Technical_requirement_and_integration_v1

4

https://graphql.org/
https://api-test.trompamusic.eu/
https://graphql.org/blog/subscriptions-in-graphql-and-relay/

Component-WP3/4 interactions. The data model supporting this approach is based on a schema.org

compatible data model that can be broken down into three parts: a) Public nodes representing the

data and the results of processes (e.g. data object Y), b) Template nodes which are maintained by

WP3/4 developers and correspond to specific algorithms (e.g. algorithm X) and c) Instance nodes -

created by Component(s) corresponding to specific tasks (e.g. run algorithm X to data Y). Details on

these three types of nodes are given is subsection 6.2.

For algorithm perspective, the main responsibility would be to enter the correct template nodes

into the CE database. With this set up, the algorithm process application can now detect whether a

job is requested by querying regularly the CE database for new instances of template nodes

(ControlActions). After a new request came in, the algorithm process application can then retrieve

the necessary parameters and file(s) to act on and start writing back status or error updates on the

ControlAction node that represents the job request. Regarding components, Component developers

can query the CE database for EntryPoints that could potentially be interesting for its users. By

implementing a user interface on the basis of the information in the (dynamic) template nodes

Property and PropertyValueSpecification, the algorithm process (WP3/4) would become available

for a user. The role of the CE in this mechanism is to maintain the data model and custom mutations

that will enable Component and process algorithm application developers to create and follow

ControlActions that effectively behave like jobs. This model should allow Component-WP3/4

interactions to take place as frictionless as possible, yet assuring the CE retains the position of

middleman for all these interactions.

One of the major technical requirements of the project is that generic components can be reused

in different pilots and end-user applications. At this point, we distinguish the following frontend (as

in browser application) components that could and should be reused in the first release of pilot

applications in M24.

❖ CE Multimodal component. This is a React library that can be re-used in a React Javascript

project to have easy access to common search queries to the CE and visualisation of results

of objects stored in the CE.

❖ CE Digital Score Edition component. This is a React library that can be used to render MEI

scores as SVGs within a web client, and supports the creation and viewing of annotations

upon the score.

Other components might be defined during the project. We agreed that the frontend components or

libraries that could be of use to TROMPA partners should comply with the following technical

requirements:

❖ The React component can be used with the latest version of React.

❖ The URL of the GraphQL endpoint targeted by the CE-API should configurable without the

need to compile from source.

❖ The React component will accept props to control the behavior of the component.

❖ The React component can be used as a Controlled Component

❖ The React component can be styled using a ThemeProvider which supports overwrites using

JSS.

D2.3_Technical_requirement_and_integration_v1

5

https://schema.org/

Version Log

Date Description

v0.1 16 Oktober 2019 Initial version

v0.2 20 Oktober 2019 Initial version submitted for internal review

v0.3 30 Oktober 2019 Revised version after internal review

v1.0 31 Oktober 2019 Final version submitted to EU

D2.3_Technical_requirement_and_integration_v1

6

Table of Contents

Table of Contents 7

1. Introduction 9

1.1 Naming conventions 9

1.2 Style conventions 9

2. Internal data model 11

2.1 Types and properties 11

2.1.1 Schema.org types and properties 11

2.1.2 Dublin Core metadata properties 13

2.1.3 SKOS equivalence linking properties 14

2.1.4 Internationalization properties 14

2.1.5 PROV-O provenance properties 14

2.1.6 Additional properties 15

3. Data integration requirements and guidelines 15

3.1 Type guidelines 15

3.2. Property guidelines 16

3.2.1 Base model properties 17

3.2.2. Core metadata properties 19

3.2.3. Equivalence linking properties 25

3.2.4 Internationalization properties[not yet implemented] 26

3.2.5. Item List 27

3.2.6. Provenance properties 28

3.2.7. Additional properties 30

3.3 Property redundancies guidelines 30

3.4 RDF compatibility guidelines 34

3.5 Ontological guidelines 34

Composition 34

3.6 Private data guidelines [not yet implemented] 36

4. GraphQL interface for managing data 38

4.1 Schema introspection 39

4.2. Queries 40

4.2.1 Simple query for one node 40

4.2.2 Simple query for multiple nodes 41

4.2.3 Complex query 42

4.3. Mutations 43

4.3.1 Creating a node 43

D2.3_Technical_requirement_and_integration_v1

7

4.3.2 Updating a node 44

4.3.4 Deleting a node 44

4.3.5 Add a relation between nodes (primitive types) 45

4.3.6 Add a relation between nodes (Interfaced or Unioned types) 45

4.3.7 Remove a relation between nodes 46

4.4. Subscriptions [not yet implemented] 47

4.5 Authentication [not yet implemented] 47

5. REST interface 47

6. Integration of jobs and processes 48

6.1 Generic solution overview 48

6.2 Data model 50

6.2.1 Template nodes 50

6.2.2 Instance nodes 51

6.2.3 Public nodes 52

6.2.4 End result 52

6.3 Perspective of algorithm process application 54

6.3.1 GraphQL queries 54

6.3.1.1 Create and maintain template nodes 54

6.3.1.2 Monitor and update instance nodes 59

6.3.1.3 Complete the request response cycle 60

6.4 Perspective of Component 62

6.4.1 GraphQL queries 62

6.3.1.1 Query for available algorithm processes 62

6.3.1.2 Monitor instance nodes 63

6.5 Perspective of CE 67

7. Integration of frontend components 67

8. Conclusion 68

9. References 68

9.1 List of abbreviations 68

D2.3_Technical_requirement_and_integration_v1

8

1. Introduction

This deliverable is the technical requirements and integration report and specifies the strategies for

technical integration of data generated by different technologies. The initial version will include the

integration guidelines to be followed during the project that will be updated in the final version.

The document is created by merging two earlier working documents (CE API Manual and CE

Import Guidelines). The document is written for a technical audience and should provide practical

information and guidelines for developers and researchers on how to integrate with the Contributor

Environment (CE). It is expected that the document is updated and improved after its initial

submission. The goal would be that at the end of the project, third parties with little background

information on the project understand how they can integrate with the CE based on this technical

documentation. A large part of this technical documentation is expected to be part of the M30

version of the public available deliverable ‘D5.1 Data infrastructure’.

The rest of this section provides naming and style conventions for this document. The main

contents of the document start (section 2) with a detailed overview of the internal data model of the

TROMPA Contributor Environment (CE). In section 3 it describes best practices for setting properties

and relations when managing data in the CE in the form of guidelines. In sections 4 and 5 the

interfaces for interacting with the CE are documented. The CE consists of an API application that

exposes basic functionalities to update and query a graph database (Neo4j) that contains a dataset

complying with the CE internal data model, which is based on the schema.org structured data

vocabulary. These functionalities can be accessed through a GraphQL and a RESTful API interface. In

chapter 6 it is explained how the job workflows and processes that are developed in WP3 and WP4

can be integrated with the CE. Chapter 7 provides requirements for the frontend components that

can be reused in different end-user pilots.

1.1 Naming conventions

Following graph parlance, throughout this document some concepts are used which are also known

under other names. Type is another word for Class. An instance of a Type (a record in the CE) will be

called a node. Types have properties, which are like fields, or ‘columns’ in SQL terms. Properties are

restricted to contain values only of one or several predefined Types. There are predefined scalar

Types, like String, Boolean, Date or Number. A property can also be restricted to contain nodes of a

certain Type. A node property that contains another node is in effect a relation to that other node,

which is also known as an edge. When node X is connected to node Y by such a relation, node Y is

considered to be adjacent to node X.

A property can contain one or multiple values. For scalar values, this would be an array. For

nodes, this would be one or more relations to other nodes.

1.2 Style conventions

For clarity, in the following sections types and properties will be marked with the following styles:

Type (Bold, UpperCamelCase)

D2.3_Technical_requirement_and_integration_v1

9

https://schema.org/

property (Italic, camelCase)

2. Internal data model
The internal data model of the CE is based on base level types of the schema.org model and a

number of schema.org extensions that fit the needs of the TROMPA project. The default schema.org

properties were supplemented with properties derived from well known ontologies. These

supplementary properties express CE needs for metadata, interlinking, internationalization, and

provenance tracking.

2.1 Types and properties

2.1.1 Schema.org types and properties

The CE internal data model is primarily based on the schema.org. The Types and properties adopted

from schema.org are the foundation for expressing TROMPA relevant web resources as clearly

defined entities, and for interlinking those entities in a meaningful way.

All nodes in the CE will be either one of the eight base types from schema.org.

These eight types are extended from schema.org’s ultimate base type Thing. Thing is not

available as a type to create a node from in the CE.

Thing has a number of properties which are available for all types, and thus all nodes that reside

in the CE. These are properties like description and subjectOf.
Each of the eight base types has supplementary properties that are characteristic for the type and

help interlinking it to other nodes. These are properties like author for CreativeWork or birthDate

for Person.
Some of the eight base types are further extended into subtypes. MusicGroup is an extension of

Organization, for it has useful extra properties like album and genre. MediaObject is an extension of

CreativeWork for properties like contentUrl or productionCompany.
As MediaObject will probably be the most used type within the TROMPA project, is further

extended with types like AudioObject and MusicVideoObject.

D2.3_Technical_requirement_and_integration_v1

10

https://schema.org/
https://schema.org/Thing

Figure 2.1. Schema.org base types, plus TROMPA relevant extensions

The following types will be supported in the CE. Please, follow the links to schema.org for an

overview of the properties and value types available for each type.

❖ Action

➢ ControlAction

➢ AddAction

➢ ReplaceAction

➢ DeleteAction

❖ CreativeWork

➢ Article

➢ Dataset

➢ DigitalDocument

➢ MediaObject

■ AudioObject

■ DataDownload

■ Dataset

■ ImageObject

■ MusicAlbum

■ MusicComposition

■ MusicPlaylist

D2.3_Technical_requirement_and_integration_v1

11

https://schema.org/Action
https://schema.org/ControlAction
https://schema.org/AddAction
https://schema.org/ReplaceAction
https://schema.org/DeleteAction
https://schema.org/Action
https://schema.org/CreativeWork
https://schema.org/Article
https://schema.org/DataCatalog
https://schema.org/Dataset
https://schema.org/DigitalDocument
https://schema.org/Map
https://schema.org/MediaObject
https://schema.org/AudioObject
https://schema.org/DataDownload
https://schema.org/Dataset
https://schema.org/ImageObject
https://schema.org/MusicAlbum
https://schema.org/MusicComposition
https://schema.org/MusicPlaylist
https://schema.org/ImageObject

■ MusicRecording

■ VideoObject

➢ SoftwareApplication

➢ VideoObject

❖ Event

❖ Intangible

➢ Property

➢ PropertyValue

➢ PropertyValueSpecification

➢ EntryPoint

➢ ItemList

➢ ListItem

❖ Organization

➢ MusicGroup

❖ Person

❖ Place

❖ Product

2.1.2 Dublin Core metadata properties

Where the schema.org Types and properties are primarily for expressing meaningful categories and

inter-relations in the CE, an additional layer of metadata properties are added to provide text fields

that allow searches across the TROMPA data set.

Adopted from the Dublin Core Metadata Initiative are the 15 classic metadata terms (DCMES),

each added to a selection of CE internal types as properties accepting String values. These properties

are the primary metadata fields used for semantic searches in the CE:

❖ title

❖ creator

❖ subject

❖ description

❖ publisher

❖ contributor

❖ date

❖ type

❖ format

❖ identifier

❖ source

❖ language

❖ relation

❖ coverage

❖ rights

D2.3_Technical_requirement_and_integration_v1

12

https://schema.org/MusicRecording
https://schema.org/MusicVideoObject
https://schema.org/VideoObject
https://schema.org/Photograph
https://schema.org/SoftwareApplication
https://schema.org/VideoObject
https://schema.org/Event
https://schema.org/Intangible
https://schema.org/PropertyValue
https://schema.org/Language
https://schema.org/PropertyValue
https://schema.org/PropertyValueSpecification
https://schema.org/EntryPoint
https://schema.org/ItemList
https://schema.org/ListItem
https://schema.org/Intangible
https://schema.org/Organization
https://schema.org/MusicGroup
https://schema.org/Organization
https://schema.org/Person
https://schema.org/Place
https://schema.org/Product
http://dublincore.org/documents/dces/
http://dublincore.org/documents/dces/
http://dublincore.org/documents/dcmi-terms/#elements-title
http://dublincore.org/documents/dcmi-terms/#elements-creator
http://dublincore.org/documents/dcmi-terms/#elements-subject
http://dublincore.org/documents/dcmi-terms/#elements-subject
http://dublincore.org/documents/dcmi-terms/#elements-publisher
http://dublincore.org/documents/dcmi-terms/#elements-contributor
http://dublincore.org/documents/dcmi-terms/#elements-date
http://dublincore.org/documents/dcmi-terms/#elements-type
http://dublincore.org/documents/dcmi-terms/#elements-format
http://dublincore.org/documents/dcmi-terms/#elements-identifier
http://dublincore.org/documents/dcmi-terms/#elements-source
http://dublincore.org/documents/dcmi-terms/#elements-language
http://dublincore.org/documents/dcmi-terms/#elements-relation
http://dublincore.org/documents/dcmi-terms/#elements-coverage
http://dublincore.org/documents/dcmi-terms/#elements-rights

2.1.3 SKOS equivalence linking properties

From the Simple Knowledge Organization System (SKOS) ontology, five of the six mapping properties

are adopted to allow equivalence interlinking.

The CE will contain mainly web references and does not strive to be an authoritative (new) public

source of ground truth. Practically, this means that for a given composer, say ‘Gustav Mahler’, there

will not be one node that represents the person Mahler. There will be multiple nodes for Mahler,

each one representing a web resource; There will be one node representing the WikiData page

about Mahler, another representing the MusicBrainz page about Mahler in English, and yet another

representing the MusicBrainz page in French.

The SKOS mapping properties provide for a way to relate nodes (web resources) that refer to the

same thing or abstract entity. From a user or search perspective, these mapping relations will allow

to consider nodes that are interrelated through these equivalence relationships, as one and the

same. It will allow to show for example all Mahler compositions, regardless of whether they are

related to the WikiData or to the MusicBrainz page of Mahler.

For each type, the ...Match properties accept only the same type as its host node. The

relatedMatch property accepts any node type.

❖ exactMatch

❖ closeMatch

❖ broadMatch

❖ narrowMatch

❖ relatedMatch

2.1.4 Internationalization properties

In conjunction, the metadata property language and the schema.org property inLanguage are used

to handle all current internationalization needs.

2.1.5 PROV-O provenance properties

To track the origin of a resource through its derivative(s), the nine base properties of the PROV

Ontology were adopted on the relevant types:

❖ wasGeneratedBy

➢ All types and extensions

❖ wasDerivedFrom

➢ All types and extensions

❖ wasAttributedTo

➢ All types and extensions

❖ Used

➢ All types and extensions

❖ wasAssociatedWith

➢ Person

➢ Organization and extension

❖ actedOnBehalfOf

➢ Person

➢ Organization and extension

D2.3_Technical_requirement_and_integration_v1

13

https://www.w3.org/TR/skos-primer
https://www.w3.org/TR/skos-reference/#mapping
https://www.w3.org/TR/skos-reference/#mapping
https://www.w3.org/2009/08/skos-reference/skos.html#exactMatch
https://www.w3.org/2009/08/skos-reference/skos.html#closeMatch
https://www.w3.org/2009/08/skos-reference/skos.html#broadMatch
https://www.w3.org/2009/08/skos-reference/skos.html#narrowMatch
https://www.w3.org/2009/08/skos-reference/skos.html#relatedMatch
http://dublincore.org/documents/dcmi-terms/#elements-language
https://schema.org/inLanguage
https://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
https://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
https://www.w3.org/TR/2013/REC-prov-o-20130430/#wasGeneratedBy
https://www.w3.org/TR/2013/REC-prov-o-20130430/#wasDerivedFrom
https://www.w3.org/TR/2013/REC-prov-o-20130430/#wasAttributedTo
https://www.w3.org/TR/2013/REC-prov-o-20130430/#used
https://www.w3.org/TR/2013/REC-prov-o-20130430/#wasAssociatedWith
https://www.w3.org/TR/2013/REC-prov-o-20130430/#wasAssociatedWith
https://www.w3.org/TR/2013/REC-prov-o-20130430/#actedOnBehalfOf

❖ startedAtTime

➢ Action

❖ wasInformedBy

➢ Action

❖ endedAtTime

➢ Action

2.1.6 Additional properties

The schema.org Thing type has a standard additionalProperty property. We use this property to add

any number of PropertyValue type nodes. This type accepts a propertyID property that should

contain the name of the additional property, while the value property contains either a scalar or

another node. The type property of this additional property node can contain any RDF URI.

This additional property mechanism allows the extension of any type of node with any number of

custom properties. This allows CE users to express their own data model in the CE, while ensuring

the entered data adheres to CE metadata and interlinking standards. The type property of any thus

related node allows to maintain RDF compatibility for these additional properties.

D2.3_Technical_requirement_and_integration_v1

14

https://www.w3.org/TR/2013/REC-prov-o-20130430/#startedAtTime
https://www.w3.org/TR/2013/REC-prov-o-20130430/#startedAtTime
https://www.w3.org/TR/2013/REC-prov-o-20130430/#wasInformedBy
https://www.w3.org/TR/2013/REC-prov-o-20130430/#endedAtTime
https://schema.org/Thing
https://schema.org/Thing
https://schema.org/additionalProperty
https://schema.org/PropertyValue
https://schema.org/propertyID
https://schema.org/value
http://dublincore.org/documents/dcmi-terms/#elements-type

3. Data integration requirements and guidelines
This chapter describes the requirements for the data stored in the CE and it provides practical

guidelines on managing data and the metadata model.

3.1 Type guidelines

When handling CE data, the primary design concept to keep in mind is that the CE does not contain

direct representations of real-life things, abstract entities or files. The data contained in the CE

represents web resources. In their turn, these web resources can represent real-life things or

abstract entities, or be files.

Thus, a Person type node in the CE does not represent a person directly, but represents a web

resource that contains information about this person, and only about this person. Similarly, an

AudioRecording type node does not contain audio file data, but is a reference to an audio file that is

available at a public URL. This is not to say that a Person type node in the CE only contains a URL and

not the person’s birth date, or that an AudioRecording type node can not contain the title of the

performance from which the audio was recorded. But this data is merely metadata about the web

resource or metadata scraped from the web resource itself. This metadata allows relevant searches

and interlinkage of the web resource references contained in the CE.

It is not a problem that the same person, or the same audio file, is represented in the CE by

multiple nodes; this only means that there are multiple web resources about this entity that are

relevant to TROMPA. These web resources might have complementary information about the same

entity, or we want to compare the web resources.

Figure 3.1

Another way to look at this, is to consider the data in the CE as a mapping of musical data that is

available on the web, and which happens to be relevant to TROMPA participants or users.

A composer might have several dedicated web pages in different public repositories, which all

happen to be relevant web resources to TROMPA. Each of these web resources would then be

represented by a Person type node in the CE, while none of these nodes represents the composer

directly, or would be the main node for that composer. Through interlinking, these nodes can be

marked as being web resources about the exact same entity. When querying the CE for this

composer, all these web resources will come up in equivalent fashion.

Any data produced by TROMPA participants or users on the basis of this data will also be stored

in the CE. Yet this data also only consists of references to web resources;

D2.3_Technical_requirement_and_integration_v1

15

An alignment file produced by a participant will be stored at a public URL and can be accessed

through the CE as a CreativeWork type node, which only contains this URL and some metadata.

An annotation created by a TROMPA user will be an Annotation type node containing the public

RESTful URL to itself in the CE, which exposes the annotation content, be it flat text or a reference to

an uploaded file.

In general, each node stored in the CE has to be a reference to a web resource. Any given web

resource can only have one node in the CE. The URL to this web resource is a required property

(source) when importing nodes of any type, and is validated to be unique. It is not possible to store

multiple nodes with the same resource URL in the CE.

The subsequent chapters will describe best practices of how to apply this design principle

consequently from the perspective of the various types of data that can be stored along with

references and from the perspective of interlinking these references.

3.2. Property guidelines

The value of any node property can be scalar (string, number, date etc.) or it can consist of one or

several other nodes. In a graph database, a scalar property is expressed as a property value that

resides inside a node, like a name or a birthdate. If a property value consists of another node, this is

expressed as a ‘relation’ with a label derived from the property name (caps snake case). Though

relations can be bidirectional, currently only unidirectional relations are supported.

Figure 3.2

When a property value consists of multiple nodes, this is expressed as multiple relations with the

same property name.

Figure 3.3

Currently, relations themselves do not contain properties. This will be supported later for TROMPA

specific use cases like segmentation and curation. Relation properties can only be Scalar values. The

aim is to avoid setting relation properties when importing data.

D2.3_Technical_requirement_and_integration_v1

16

3.2.1 Base model properties

Schema.org provides a generic model to interlink the base type entities with a variety of properties.

Between two nodes, a number of relations can exist, each expressing a different or overlapping

semantic relation to the other. It is important to create all such semantic relations between nodes,

as this way it is possible to find the nodes through different types of (semantic) search queries.

Figure 3.4

Nodes represent web resources, and a specific thing could have several web-resources dedicated to

it. The exactMatch property is used to create relations between nodes that are about the same

thing. When linking a node to one of those nodes, it is not necessary to duplicate the relations to the

exact matching nodes. Creating relations with just one of the exact matching nodes is sufficient.

D2.3_Technical_requirement_and_integration_v1

17

Figure 3.5

D2.3_Technical_requirement_and_integration_v1

18

3.2.2. Core metadata properties

While the schema.org types and properties are mainly to provide semantic structure to the data in

the CE, the metadata properties are there to provide for global searches on the basis of search

terms. For this reason, all metadata properties accept scalar type values only.

Any node in the CE represents a web resource. A node’s metadata properties contain information

about either the web resource itself or about a thing (real or abstract) or the file that this web

resource is about.

As a general rule, the metadata properties should in the first place contain information on the

thing the web resource is about. If this does not make sense (e.g. who would be the creator of a

Person, like a composer?) the metadata property should contain information about the web

resource (So the creator of a Wikipedia page about a composer would be Wikipedia).

Some metadata properties never contain information on the thing the web resource is about, like

contributor (this is always the agent that created, or is the current maintainer of, the web resource)

and source (this is always the URL of the web resource).

All metadata properties should be written in the same language, and the language property

should be set accordingly, with the corresponding 2-letter language code. This practice ensures that

searches can be done within the context of a single language.

As the proper setting of these properties is essential for a well functioning CE, there is a guideline

section for each of the metadata properties:

Property Type On Example(s) Explanation

title String thing ‘Symfony No. 2’ A name given to the thing the web
resource is about.
Typically, a Title will be a name by
which the resource is formally known.

 ‘Symfony No. 2 for 2
voices, mixed chorus,
orchestra, for voices
...’

The title should not be too long. The
title will be displayed at the top of a
search result, with (part of) the
description.

 ‘Piano recording Für
Elise’

When the web resource is an uploaded
file, the title should be about the
content of the file. Preferably let the
uploader define this title.

creator String thing ‘Gustav Mahler’ The person, organization or service
who created the thing the web
resource is about.
The name of entity primarily
responsible for creating the ‘thing’ the
web resource is about. This name
should be entered in
givenName-familyName format.
If the creator of the thing is ambiguous
(e.g. who would be the creator of

D2.3_Technical_requirement_and_integration_v1

19

http://imslp.org/index.php?title=Category:For_2_voices%2C_mixed_chorus%2C_orchestra&transclude=Template:Catintro
http://imslp.org/index.php?title=Category:For_2_voices%2C_mixed_chorus%2C_orchestra&transclude=Template:Catintro
http://imslp.org/index.php?title=Category:For_2_voices%2C_mixed_chorus%2C_orchestra&transclude=Template:Catintro

‘Gustav Mahler’?) then enter the
creator of the web resource or the
service. This name should be entered
as the base URL for the web resource,
or the service.

 ‘Mahler, Gustav’ The creator name should follow
givenName-familyName order

 ‘https://www.voctrol
abs.com’

When the web resource is for example
a file auto-generated by a TROMPA
partner service, identify the creator as
the participant, identified by the base
URL.

 ‘https://en.wikipedia.
org’

For a web resource about a Person, for
example ‘Gustav Mahler’, the public
repository itself can be identified as the
creator, by its base URL

 ‘https://api.trompam
usic.eu/b670c593-d1c
6-45ed-9a09-6a51c12
108e1‘

If the creator is represented by a node
in the CE, for example a TROMPA user,
this node’s URL can be used to identify
the creator

subject String thing ‘symphonic
poem,Gustav
Mahler,Berlin
Philharmonic’

The topic of the resource.
Typically, the subject will be
represented using keywords, key
phrases, or classification codes.
Recommended best practice is to use a
controlled vocabulary.

 ‘https://en.wikipedia.
org/about_gustav’

An URL is not a valid keyword

 ‘This is about a
composer born in
1867 in Linz...’

Stick to keywords only. The description
property allows a flowing test.

description String thing ‘Mahler completed
what would become
the first movement of
the symphony in
1888 as a
single-movement
symphonic poem…’

An account of the resource.
Description may include but is not
limited to: an abstract, a table of
contents, a graphical representation, or
a free-text account of the resource.

 ‘symphonic
poem,Gustav
Mahler,Berlin
Philharmonic’

This should be free flowing text. For
keywords use the subject property

D2.3_Technical_requirement_and_integration_v1

20

publisher String thing ‘Friedrich Hofmeister,
Leipzig’

The person, organization or service
responsible for making available the
thing the web resource is about.
Typically, the name of the Publisher
should be used, if possible with a place
indication.
If the publisher of the thing is
ambiguous (e.g. who would be the
publisher of ‘Gustav Mahler’?) then
enter the publisher of the web
resource or the service. This name
should be entered as the base URL for
the web resource, or the service. In this
case, the creator, publisher and
contributor are often the same.

 ‘https://en.wikipedia.
org’

If the web resource is for example a
page about a composer, a publisher for
the composer does not make sense.
Mark the web resource base url as the
publisher.

 ‘https://imslp.org’ If the web resource is about, for
example, a pdf from a score published
in paper, mark the paper’s publisher,
not the base URL of the website where
the PDF can be found.

 ‘https://musescore.or
g’

If the web resource is, for example, a
digitized score published on a website,
mark the base URL of the website.

contributor URL resource ‘https://imslp.org’ A person, an organization, or a service
responsible for contributing the thing
to the web resource. This can be either
a name or a base URL.
If the contributor of the thing is
ambiguous (e.g. who would be the
contributor of ‘Gustav Mahler’?) then
enter the contributor to the web
resource about the thing, or the entity
using the service to create the thing.
This should be a URL unambiguously
pointing to the contributor.
If this contributor to the web resource
or service is unknown, enter the web
resource or the service itself as
contributor. This name should be
entered as the base URL for the web
resource or service. In this case, the

D2.3_Technical_requirement_and_integration_v1

21

creator, publisher and contributor are
often the same.

 ‘https://imslp.org/wik
i/List_of_works_by_G
ustav_Mahler’

The contributor should be only the
base URL.

 ‘IMSLP’ Enter the full base URL

 ‘https://api.trompam
usic.eu/b670c593-d1c
6-45ed-9a09-6a51c12
108e1‘

The public profile of a TROMPA user is
a valid contributor identifier

date Date thing ‘1895-12-13’ A point in time associated with an
event in the lifecycle of the resource.
Must be in ‘YYYY’, ‘YYYY-MM’ or
‘YYYY-MM-DD’ format.
Examples: composition first
performance, publishing date, birth
date, release date, file generation date,
annotation date

 ‘1895’ Is also a valid date

 ‘2018-12-04 12:04:11
’

Is not a valid Date

type URL thing ‘http://purl.org/ontol
ogy/mo/Composition’

The RDF type URI of the node.
Note: this will be be a secondary type,
as the primary type will correspond to
the CE internal model type from
schema.org and is set automatically.
Additional types can be set in the
additionalType property.

 ‘mo:composition’ Turtle notation is not supported

 ‘’ Can be left empty

format String thing ‘audio/aac’ An Internet Media Type [MIME]

 ‘text/html’ If the thing the web resource is about
has a mime-type, enter this mime-type.
If the web resource is, for example, a
wikipedia page about a composer, the
mime type for the composer does not
make sense. Mark the mime type of
the web page.

D2.3_Technical_requirement_and_integration_v1

22

 ‘1140x300 pixels’ Should be a valid mime type
(https://www.iana.org/assignments/m
edia-types/media-types.xhtml) If
necessary, we can define a custom
mime type (vnd.trompamusic.[type])

identifier UUID CE ‘5d05bfda-c050-424e
-9d11-314b80225ea8’

An unambiguous reference to the
resource within a given context.
For CE we will use UUID.
An invalid or non-unique UUID will fail
validation.
If no UUID is passed, one will be
generated by the CE (recommended).

 ‘https://imslp.org/gus
tav_mahler’

Even though unique, this is not a valid
identifier

 ‘musicbrainz_adcdc4
72-8b19-4e6f-aa4e-b
e8c6aea5f8a’

This is not a valid UUID.
One could imagine passing a
Musicbrainz UUID, though. As long as
this UUID is valid and unique for CE, it
will work.

 ‘’ When left empty, the CE will generate a
UUID (recommended)

source URL resource ‘https://imslp.org/wik
i/Symphony_No.2_(M
ahler,_Gustav)’

The URL of the web resource to be
represented by the node.

 ‘https://api.trompam
usic.eu/b670c593-d1c
6-45ed-9a09-6a51c12
108e1‘

Any TROMPA produced data stored in
CE will automatically have a unique URl
made up of the TROMPA API base URL
and the UUID of the node. Only use this
for nodes that do not have any other
(reliable & unique) URL to identify
them with (like user annotations or
automatically generated content).

 ‘IMSLP’ Enter the full unique base URL
corresponding to the web resource

language enum metadata ‘en’ The language the metadata is written
in.
This does not have to correspond to
the language of the thing the
websource is about. English metadata
can be written about a music
composition that has lyrics in German.
In CE we use a fixed list with RFC4646
2-letter codes, currently:
en,es,ca,nl,de,fr

D2.3_Technical_requirement_and_integration_v1

23

https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml

 ‘english’ Is not a valid language code.

 ‘’ Required value. Even if setting a
language for the resource (eg a violin
recording) does not make sense, the
language indicates the language the
metadata is written in, or the context
from which the resource was created.
(An uploaded recording from a Spanish
interface would have ‘es’ as value)

 ‘uz’ Uzbek is not a supported language

relation URL resource ‘https://imslp.org/wik
i/Category:Mahler,_G
ustav’

A related resource.
In CE, any web resource can be used as
a relation.

 ‘’ Can be left empty

 ‘Gustav Mahler’ Should be a valid URL

coverage String resource ‘world’ The spatial or temporal topic of the
resource, the spatial applicability of the
resource, or the jurisdiction under
which the resource is relevant.
Spatial topic and spatial applicability
may be a named place or a location
specified by its geographic coordinates.
Temporal topic may be a named
period, date, or date range. A
jurisdiction may be a named
administrative entity or a geographic
place to which the resource applies.
Recommended best practice is to use a
controlled vocabulary such as the
Thesaurus of Geographic Names [TGN].
Where appropriate, named places or
time periods can be used in preference
to numeric identifiers such as sets of
coordinates or date ranges.

 ‘https://api.trompam
usic.eu/c984a101-799
f-422d-aec2-791c44e
67dee‘

A reference to a Place node in the CE
can be used as a coverage area. Make
sure the UUID points to a PLACE node.

rights URL thing ‘https://en.wikipedia.
org/wiki/Wikipedia:T
ext_of_Creative_Com

Information about rights held in and
over the thing the web resource is
about.

D2.3_Technical_requirement_and_integration_v1

24

mons_Attribution-Sha
reAlike_3.0_Unporte
d_License’

Typically, rights information includes a
statement about various property
rights associated with the resource,
including intellectual property rights,
and should be available as a document
at the given URL.
If rights for the thing are ambiguous
(e.g. what are the rights for person
‘Gustav Mahler’?) then enter the rights
for the web resource or the service.

 ‘Creative Commons‘ Pass a full URL to the rights document

 ‘’ Left empty means that no copyrights
apply to this data. This is rare and we
should strive to always have rights
indicated.

Table 3.1 List of core metadata properties and examples

3.2.3. Equivalence linking properties

Most interlinking between nodes stored in the CE can and should be done through the default

properties provided by the schema.org base types and the extension selected for the TROMPA

project (Section 2.3.1).
Although the default sameAs property could be abused for this purpose, schema.org does not

provide for a way to assert equivalence between entities, let alone indicate more subtle types of

‘same as’ relations.

When importing a node for which there are already multiple equivalent nodes present, it is

necessary to create bidirectional equivalence relations with all those equivalent nodes. This will

chain the new node in equivalence with all those nodes. When future crowd curation determines a

node does not fit in the equivalence chain, the equivalence relation(s) will be suppressed.

From the Simple Knowledge Organization System we adopt the mapping ontology that allows to

define several levels of equivalence:

Property Value type Explanation/example

exactMatch Parent type ‘used to link two concepts, indicating a high degree of
confidence that the concepts can be used interchangeably
across a wide range of information retrieval applications.’
exactMatch is a symmetric property; if set in a node, it
should also be set in the related node. (until we manage to
support bidirectional relations)
If set, none of the other ...Match properties should be set.

D2.3_Technical_requirement_and_integration_v1

25

https://schema.org/sameAs
https://www.w3.org/TR/skos-reference

Two web resources about the same composer should each
have the exactMatch property set with the other.

closeMatch Parent type ‘used to link two concepts that are sufficiently similar that
they can be used interchangeably in some information
retrieval applications’
closeMatch is a symmetric property; if set in a node, it
should also be set in the related node. (until we manage to
support bidirectional relations)
If set, none of the other ...Match properties should be set.
Two score versions of the same music composition should
both have the closeMatch property set with the other.

broadMatch

narrowMatch

Parent type ‘used to state a hierarchical mapping link between two
concepts.’
broadMatch and narrowMatch are inverses; when setting
either in one node, the inverse should be set in the related
node.
If either is set, none of the other ...Match properties should
be set.
A node for full score can have the narrowMatch property
set with a node representing one page of the same score.
The one page node could then set the broadMatch property
with other.

relatedMatch ThingInterface
(any base and
extended type)

‘used to state an associative mapping link between two
concepts.’
If set, none of the other ...Match properties should be set.
relatedMatch is a symmetric property; if set in a node, it
should also be set in the related node. (until we manage to
support bidirectional relations)
A music group that operates under different names and/or
occupancies can have different nodes that are interrelated
by relatedMatch relations.
Should not be set when any of the other ...Match properties
are set.

Table 3.2. Equivalence and examples

3.2.4 Internationalization properties[not yet implemented]

Within the TROMPA project, currently six languages need to be supported.Each node will have the

metadata property language, which should be one of the six languages. Setting the request

Accept-Language header to one of those languages will yield language filtered results[not yet

implemented]. Omitting the Accept-Language header will yield results for all languages.

When importing data in multiple languages, it is important to create proper exactMatch relations.

If, for example, 3 WikiData pages for ‘Gustav Mahler’ are imported in 3 different languages as Person

type nodes, these nodes should be interlinked by bidirectional exactMatch relations. Whether

exactMatch relations were set or not, without Accept-Language header a query for the Person

‘Gustav Mahler’ would yield the WikiData pages for all 3 languages, and could include nodes related

D2.3_Technical_requirement_and_integration_v1

26

https://www.w3.org/2009/08/skos-reference/skos.html#closeMatch
https://www.w3.org/2009/08/skos-reference/skos.html#broadMatch
https://www.w3.org/2009/08/skos-reference/skos.html#narrowMatch
https://www.w3.org/2009/08/skos-reference/skos.html#relatedMatch

to any of those 3 Person nodes. However, no exactMatch relations were set and the

Accept-Language was set to ‘fr’, only the French version of the ‘Gustav Mahler’ page would be

returned, with only French nodes related to the French version, and no nodes related to the ‘Gustav

Mahler’ nodes in other languages. So, making sure the exactMatch relations are set correctly will

ensure the 3 Person nodes are considered matching the same ‘concept’, and the results can include

relevant nodes that are related to the non-French ‘Gustav Mahler’ nodes.

In the example above, the question might arise if, with a French Accept-Language header set, any

content without French metadata is suppressed from the result. A relevant score file, for example,

and for which language is irrelevant, might be suppressed because its metadata happens to be in

German. For these cases, the inLanguage property is used on any CreativeWork and Event type

nodes, plus their extended types. This inLanguage property can be set with any language, and can

also be left empty. With the French Accept-Language set, the results would include nodes that have

either of the language or inLanguage properties set to ‘fr’, OR the inLanguage property left empty. In

the example above, the score with German metadata would have its inLanguage property left empty

and it would be included in the French results.

The Accept-Language header can contain multiple language codes in order of priority. Results

will be filtered for the first priority language[not yet implemented]. If a node is only available in the second

language, this one will be returned, etcetera. Setting the Accept-Language to ‘fr,en’ would yield

French results, and where French content is not available, default to English[not yet implemented].

3.2.5. Item List

In order to allow ordered and unordered lists (or collections) of items to be maintained in the CE

database, the ItemList and ListItem types are supported. There are several ways to represent a list

of items in the CE database:

❖ Unordered lists can be created by adding an ItemList node, which then relates to all the list

items through the itemListElement property.

❖ Ordered lists using the ItemList.position property. An arbitrary number of items can be

added to the ItemList by creating a ListItem node in between each Item and the ItemList

node. The ListItem.item property relates each Item to its respective ListItem. The order of

the items can be determined through the ListItem.position property. This method is good for

lists that remain static, as adding an item or changing the order is cumbersome.

❖ Ordered lists using the ListItem.nextItem and previousItem properties. This method is easier

for dynamic lists, as it needs less updates to add, change or remove an item. Although

technically it would only be necessary to create a single itemListElement relation between

Itemlist and one ListItem, it is not advised: It would be difficult to use the CE API GraphQL

interface to retrieve all items through concurrent nextItem relations.

D2.3_Technical_requirement_and_integration_v1

27

https://schema.org/ItemList
https://schema.org/ListItem
https://schema.org/itemListElement

Figure 3.6

3.2.6. Provenance properties

The CE internal model supports base level implementation of the PROV-O mechanism to track

provenance for data stored in CE.

For most client usage, the CE will handle the creation of provenance tracking data itself[not yet

implemented], based on the user and the mutations this user applies to the dataset through the GraphQL

interface. For example, when an existing User adds an additional Person node, connected to an

existing MusicComposition:

Figure 3.7

The CE would make sure the following additional nodes and edges are also created:

D2.3_Technical_requirement_and_integration_v1

28

Figure 3.8

For some CE clients, this functionality will not be sufficient. Data imported straight from a

non-TROMPA public repository will have to be marked as originating from or related to Agents that

cannot be derived from the creation call. The client might have to create a new Agent, set properties

or add Action type data to set the proper basis for further provenance tracking.

As this is a rich subject, please read this PROV-O primer, while keeping in mind that only the Starting

Point Terms are implemented in the CE.

An example of custom added provenance data (AddAction):

D2.3_Technical_requirement_and_integration_v1

29

https://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
https://www.w3.org/TR/2013/REC-prov-o-20130430/#description-starting-point-terms
https://www.w3.org/TR/2013/REC-prov-o-20130430/#description-starting-point-terms

Figure 3.9

3.2.7. Additional properties

An additional property can be added to any single node by adding a node of type PropertyValue to

the node’s additionalProperty (ADDITIONAL_PROPERTY relation). Use the PropertyValue.propertyID

for the name of the value.

If the extra property is a relation to another node, create a relation to the target node with the

PropertyValue.nodeValue property and set the PropertyValue.valueReference to the type of the

targeted node.

If the extra property is a scalar, then set the Property.value to the stringified value, then set the

property scalar type in PropertyValue.valueReference.

3.3 Property redundancies guidelines

Between the properties originating from the different ontologies, there are some apparent

redundancies. Some of those properties always share the same values between them, and some

share the same values often.

D2.3_Technical_requirement_and_integration_v1

30

https://meta.schema.org/PropertyValue

For now, we prefer to leave all these redundancies in the model, because it is not yet clear which

properties are always to get the same value. In time, we will choose whether to remove completely

redundant properties in favour of one. For partly redundant properties we could implement a

mechanism that ensures redundant properties are synchronized in case one of them is left empty,

maintaining the possibility to set those properties to different values where necessary. Here follows

an overview of properties that are partly or completely redundant:

Ontology Property Value type Description

Schema.Thing sameAs URL Equal to DC.source

Schema.Thing url URL URL of the webresource
about the entity.

In case of a Person, this is
equal to
Schema.Thing.sameAs and
DC.source.

In case of a content file, this
is equal to
Schema.CreativeWork.cont
entUrl

Schema.CreativeWork contentUrl URL URL of the image, audio or
video file

DC source URL Equal to
Schema.Thing.sameAs

Schema.Thing name String Equal to DC.title

DC title String Equal to
Schema.Thing.name

DC creator String/URL For types where this makes
sense (CreativeWork,
Action, Event) the value is
the (String) name of the
Person/Organization,
corresponding to
Schema.author/agent/orga
nizer related entity.

For other types, it is the
name/base-URL of the
person/organization that

D2.3_Technical_requirement_and_integration_v1

31

created the web resource
about this entity. In this
case, it can equal publisher,
or contributor, or both.

DC publisher URL For CreativeWork, this
corresponds to the
base-URL of the
schema_publisher, which is
the Organization that
published the book, article,
score etc.

For Products, like vinyl, cd
this is the base-URL of the
manufacturer.

If the thing cannot be
published, publisher value is
the base-URL of the
webresource about this
thing. In this case, it can
equal creator, or
contributor, or both.

DC contributor URL For all types, this value is
either the base-URL of the
web-resource about the
thing, or the full name of
the TROMPA User that
created this thing.

In all cases, it can equal
publisher, or contributor, or
both.

Schema.MusicComposition composer Person For MusicComposition this
value is the same as author.

This value can be equal to
accountablePerson and/or
wasAttributedTo.

Schema.CreativeWork author Person For MusicComposition this
value is the same as
composer.

This value can be equal to
accountablePerson and/or

D2.3_Technical_requirement_and_integration_v1

32

wasAttributedTo.

Schema.CreativeWork accountablePerson Person To be set with the Person
legally accountable for the
CreativeWork. Could be left
empty if unknown, or could
be equal to author and/or
composer

PROV-O wasAttributedTo URL For CreativeWork this value
is the same as author.

For MusicComposition this
value is the same as
composer and author.

For Event this value should
be same as organizer.

For Action this value should
be same as agent.

For Product this value
should be same as
manufacturer.

For Organization this value
should be same as founder.

For other types this
property should be left
empty, unless the entity is
clearly attributable to a
Person or Organization.

Schema.Person birthDate Date Is equal to DC.date

Schema.Event startDate DateTime Is equal to DC.date

DC date Date The value represents the
date for the thing coming
into existence. E.g. the
publication date (Article),
first performance date
(MusicComposition).

In case of a Person, it is
equal to the birthdate.

D2.3_Technical_requirement_and_integration_v1

33

In case of an Event, it is
equal to startDate

Schema.Thing inLanguage String On CreativeWork, Event
and Action types, this is/are
the languages in which the
work, event or action is
expressed. Multiple
languages can be set, like
“en,fr,de” in order of
priority.

This can be the same, or can
contain the same value as
DC.language

This value should be left
empty if CreativeWork and
Event cannot be
determined.

DC language String For all types, this language
is the language in which the
DC properties are written.

Table 3.3. Property redundancies guidelines

3.4 RDF compatibility guidelines

Currently, all nodes and relations used in the CE internal data model can be traced back to a

well-known ontology and have a RDF URI. The aim is to maintain this RDF compatibility throughout

the TROMPA project. Optional json-ld output on CE API output is released as part of the CE-API

v0.4.0.

By default, all nodes and relations will be automatically labelled with one or more RDF URI’s of

the ontologies on which the internal data model is based[not yet implemented]. These will be available

through the type property that is available on all internal model types.

When importing data in the CE, it is possible to add additional RDF URI’s to nodes. For this

purpose, add one or more comma-separated URI’s in the additionalType property available for each

internal model type.

type: "https://schema.org/VideoObject"
additionalType: "http://purl.org/ontology/mo/MusicalManifestation"

D2.3_Technical_requirement_and_integration_v1

34

This works the same for additionalProperty. The mechanism to add custom edges and nodes is RDF

compatible.

3.5 Ontological guidelines

In order to ensure consistency in the data added to the CE by each partner, we provide concrete

guidelines about what fields to set on the object types which we are currently using.

Person
Use the CreatePerson mutation, with the following fields:

❖ contributor (required): The URL of the institution (e.g. https://www.upf.edu), or the URL of a

TROMPA contributor (once the CE supports users)

❖ creator (required): the base url of the website where the information was obtained from

(e.g. imslp.org, musicbrainz.org)

❖ description: A biography of the person if the source contains one, otherwise an empty

string.

❖ format (required): Format of the source where the data for this person came from (this is a

mimetype, so for a website this would be something like "text/html")

❖ language (required): Language of the source of the data, one of en,es,ca,nl,de,fr

❖ publisher: Set to the same value as ‘creator’

❖ source (required): the URL of the page about this person

❖ subject (required): Currently set to the dummy string “Composer”

❖ name (required): The name of the person

❖ title (required): The name of the person

MusicComposition

Use the CreateMusicComposition mutation, with the following fields

❖ title (required): Title of the composition

❖ name (required): Title of the composition

❖ creator (required): the base url of the website where the information was obtained from

(e.g. imslp.org, musicbrainz.org)

❖ creator (required): Name of the composer (string)

❖ description (required): currently set to “Composition [name] by [composer]”

❖ source (required): the URL of the page about this composition

❖ subject (required): currently set to “[language] Choir piece”

❖ format (required): Format of the source where the data for this person came from (this is a

mimetype, so for a website this would be something like "text/html")

❖ language (required): Language of the source of the data, one of en,es,ca,nl,de,fr

Add a person as the composer of a composition using the AddCreativeWorkInterfaceLegalPerson

mutation . 1

1 There is currently no way to set the ‘Composer’ of a work, so we set the Author field instead
(https://github.com/trompamusic/ce-api/issues/18)

D2.3_Technical_requirement_and_integration_v1

35

https://www.upf.edu/
https://github.com/trompamusic/ce-api/issues/18

AddCreativeWorkInterfaceLegalPerson (
 from: {identifier: "composition_id" type: MusicComposition}
 to: {identifier: "composer_id" type: Person}
 field: author
) { }

DigitalDocument
A DigitalDocument represents a data file. It can be linked to another object to say that it is a file of

that object (e.g. the score of a composition)

Use the CreateDigitalDocument mutation with the following fields:

❖ contributor: same as the description for the CreativeWork that this document links to

❖ creator: same as the description for the CreativeWork that this document links to

❖ description: same as the description for the CreativeWork that this document links to

❖ format: the mimetype of this document

❖ Language: the language that the document is in (if applicable)

❖ source: the url of the page where this document can be downloaded from

❖ subject: the same as the subject for the CreativeWork that this document links to

❖ title: the name of the thing that this document refers to

❖ name: the name of the thing that this document refers to

❖ relation: the url of the document on the internet

❖ license: the license that the document is made available under

Joining a Document and a Composition
To join a DigitalDocument and a MusicComposition, say that the document is an exampleOfWork of

the composition with the following mutation:

AddThingInterfaceCreativeWorkInterface(
 from: {identifier: "{document_id}" type:DigitalDocument}
 to: {identifier: "{composition_id}" type:MusicComposition}
 field: exampleOfWork
) { }

Joining Many Documents Together
If there are many documents that represent the same work, they can be joined together using the

skos:BroadMatch relation between every pair of documents. Use the following mutation:

AddDigitalDocumentBroadMatch(
 from: {identifier: "anid" }
 to: {identifier: "anotherid" }
) { }

Joining the same entity from different sources

D2.3_Technical_requirement_and_integration_v1

36

If there is metadata from different sources that refer to the same item (person, composition, etc)

then use the Add[Object]ExactMatch mutation between all pairs of objects which refer to the same

thing.

3.6 Private data guidelines [not yet implemented]

Data stored within the CE’s graph database is assumed to be public in nature, with the creation and

interlinking of open data forming a core focus of the TROMPA project. Nevertheless, certain user

data pertaining to TROMPA will need to remain private, or accessible to only particular specified

users. Examples include private rehearsal recordings that instrumental players or choir singers may

wish to listen to in order to support rehearsal practice, while not necessarily wishing to share them

with the rest of the world; rehearsal notes intended for private discussion between a teacher and a

student; or, working drafts of scholarly annotations that may need to be iteratively improved and

finalised before open publication.

Such requirements will be supported by mandating storage of non-public data in web-accessible

locations outside of the CE, tied into the CE only by reference (URI). Fine-grained user-based access

authorization can then be implemented at the external stores. The granularity of this integration by

reference is likely to be use-case dependent, and remains to be worked out during the course of

further development work within the TROMPA project; for instance, externally stored (non-public)

annotations may be referenced individually from within the CE, or an externally stored annotation

container (“annotations by user X”) might be referenced instead.

If a private data item (e.g. a working draft of an annotation) becomes public (is published) during

a particular workflow, this can be handled by modifying authorisation at the external storage

location accordingly, where integration by reference from the CE is sufficient; or, if the

newly-published item is to be discoverable via the trompa API, it can be incorporated by value

(copied in) to the CE, with the externally hosted working draft referencing the new CE-internal

location by URI via the CE’s REST-wrapper (section 5).

By use of a shared identity provider between the external stores and the CE, their separation can

remain transparent to non-specialist users who simply experience logging into the TROMPA

application(s) supporting their use case(s).

Concrete implementations of this authorisation concept remain to be developed at the current

stage of the project. Candidate technologies for implementation of the authorised external storage

include Solid PODS (“personal online data stores”), and S3 buckets implemented on the Amazon

AWS Cognito platform.

Solid is a Web decentralisation project building on a W3C standards-based Linked Data 2

technology stack which aims to enable rich online interactions between users that retain data

ownership with each individual user. From a TROMPA perspective, it allows each user to retain

fine-grained access control over their personal data, supporting sharing of data with specified users,

and simple integration by reference with the CE. Solid PODS are not tied to a monolithic corporate

entity, but may rather be obtained from a growing number of public providers, or even be

self-hosted by technically savvy users. Further, a TROMPA-hosted provider has been set up for

development and testing purposes at MDW and could be opened up to use by a TROMPA audience.

This emphasis on user choice and control of web-hosted data provide a pleasing fit to TROMPA’s

emphasis on FAIR and open data principles.

2 http://solidproject.org

D2.3_Technical_requirement_and_integration_v1

37

http://solidproject.org/

Amazon AWS Cognito makes it possible to add user sign-up, sign-in, and access control to

web and mobile apps quickly and easily. Amazon Cognito scales to millions of users and supports

sign-in with social identity providers, such as Facebook, Google, and Amazon, enterprise identity

providers via SAML 2.0 and OpenID Connect. It is integrated with the AWS Identity and Access

Management (IAM) service, which makes it possible to manage access to AWS services and

resources securely. Using IAM, one can create and manage AWS users and groups, and use

permissions to allow and deny their access to AWS resources, like for instance S3 buckets and

specific directories and objects within them. In the context of the CE it makes it possible to grant

access to certain use-case resources to particular users or groups of users, guaranteeing that some

user data may be added, modified or deleted only by the user who owns the data, and allowing for

sharing data between particular users of the system. A potential benefit of AWS Cognito is their

Hosted UI, which eliminates the hosting and secure login security responsibility for the Trompa

partners.

D2.3_Technical_requirement_and_integration_v1

38

4. GraphQL interface for managing data
GraphQL is an open standard API query language that is designed to allow clients flexible API access

to datasets but also to processes, responding either with customized data objects aggregated from

data from the database or from secondary data stores or processes. Its online manual can provide

detailed background information for the following sections.

GraphQL supports three types of functionalities that are accessible through the GraphQL API

interface:

❖ Queries

❖ Mutations

❖ Subscriptions

For the CE API, a graphic interface is available that provides a human-friendly way to interact with

the GraphQL API interface and supports rich introspection of the schema.

Figure 4.1

The top part of the interface is for query management. The left part is used to help composing a

request and the right part will show the response after clicking the > button.

D2.3_Technical_requirement_and_integration_v1

39

https://graphql.org/
https://graphql.org/learn/
https://api-test.trompamusic.eu/

4.1 Schema introspection

On the far right of the interface there is a green ‘SCHEMA’ tab that offers a complete overview of the

type and property schema underlying the CE database. It also offers an overview for all the ‘custom’

functionalities available, like adding, mutating or deleting specific node relations.

Figure 4.2

This introspection tool shows the actual schema and its possibilities, and is the best way to explore

the schema and how to access the CE api functionalities.

D2.3_Technical_requirement_and_integration_v1

40

4.2. Queries

Queries are requests for existing data from the database.

4.2.1 Simple query for one node

Figure 4.3

A query starts with the phrase ‘query’ and typically consists of:

❖ The name of the query (optional)

❖ Type of entity for which is queried

❖ Conditions (optional)

❖ List of properties to be included in the response

The result typically consists of json object containing:

❖ The “data” object with the result(s)

❖ The name of the query responded to

❖ The actual data, corresponding to the list of properties to be included

D2.3_Technical_requirement_and_integration_v1

41

4.2.2 Simple query for multiple nodes

Figure 4.4

By passing first / offset parameters, the results can be paginated

D2.3_Technical_requirement_and_integration_v1

42

4.2.3 Complex query

Figure 4.5

For properties containing nodes, the request body needs to create a deeper property list for that

node. In most cases these deeper nodes can be of multiple types. For each expected node type, an

… on [type] {} property list needs to be included. Thankfully, the CE-api interface suggests options

and validates the query in real time.

D2.3_Technical_requirement_and_integration_v1

43

4.3. Mutations

Mutations are queries that add, update or remove data in the database.

4.3.1 Creating a node

Figure 4.6

A create mutation typically consists of:

❖ Between brackets, a list of scalar parameters that correspond to the type properties for

which the value needs to be set. Properties can also contain arrays of scalars.

❖ Between curly braces, a list of properties to be returned once the node is created

What cannot be passed as data to be created is a related node, either new or existing.The exception

are properties containing ‘datetime’ type data. The Neo4j database has a number of scalar datetime

types. As we use the Apollo library, we need to pass such a date as an object.

D2.3_Technical_requirement_and_integration_v1

44

4.3.2 Updating a node

Figure 4.7

The update query is much like the Create query, with the difference that the identifier needs to be

passed along with the update parameters. Properties that are left out will not be updated. When

updating an array value, the full array needs to be passed: elements missing from the update data

will be removed.

4.3.4 Deleting a node

Figure 4.8

When deleting a node, only the identifier can be passed as a parameter. When a node gets deleted,

all its incoming and outgoing relations to other nodes will also be deleted. The response will contain

the data of just before the node was deleted. Running the same delete query again would yield an

empty result, as there was no more node to delete:

Figure 4.9

D2.3_Technical_requirement_and_integration_v1

45

4.3.5 Add a relation between nodes (primitive types)

Figure 4.10

For each relation, which is a property containing another node, there is a dedicated mutation query.

Consult the schema to find the right relation mutation. The GraphQL interface has autosuggestion

and detects invalid queries.

The mutation create query for a relation between 2 primitive types only needs the identifiers of

both nodes as parameters, contained in ‘from’ and ‘to’ objects.It is possible to create multiple

relations of the same type between the same nodes.

4.3.6 Add a relation between nodes (Interfaced or Unioned types)

Figure 4.11

D2.3_Technical_requirement_and_integration_v1

46

To create a relation that expresses a property that can contain different node types (relation to an

Interface or a Union), a number of custom queries were created. Consult the schema to find the

right relation query.

Depending on the query, the ‘from’ and ‘to’ bodies require an indication of the primitive type of

the parent and target node. If the parent node type has several properties that express relations

between Interfaced or Unioned types, it is also necessary to include the ‘field’ parameter that

indicates which parent property is expressed by the relation.

4.3.7 Remove a relation between nodes

Figure 4.12

But for the Query name, the Removal query for a relation is identical to the Create query. A Remove

query removes all the relations of the same type between the indicated nodes .

D2.3_Technical_requirement_and_integration_v1

47

4.4. Subscriptions [not yet implemented]

Some algorithms that we expect to run within the CE will be run by a partner on all documents that

exist in the CE. As an example, MTG might want to run MFCC calculations on all audio files added to

the CE, regardless of who adds these documents. To facilitate this, specific Subscriptions will be

added. The subscriptions will not trigger the ControlActions itself, but it will allow partners to trigger

ControlActions on certain actions. For example, the Subscription will allow applications to listen

when a DigitalDocument gets added. A separate process, which is subscribed to this topic, gets the

notification and will trigger a ControlAction so again a separate process/algorithm can run its task(s).

4.5 Authentication [not yet implemented]

The current version (0.4) of the CE-API GraphQL interface does not yet support authentication. This

means that all data can be accessed, changed and added by anybody. When the (hosted) CE-API is

made available to the general public, access control and authentication will be required. At first all

partners of the project will be provided with tokens with write access to the CE-API. Each token can

be allocated allowed actions e.g. queries, subscriptions and mutations. At a later stage third parties

can be provided with tokens with write access to specific actions.

5. REST interface
The CE api provides a very basic REST interface. The main purpose of this REST interface is to provide

a unique URL for each node in the CE database and to provide JSON-LD output:

https://[ce-api-domain]/[node UUID]

Adjacent nodes in the graph which are related to the one requested will be included in the response

only by reference to their respective REST URL. They will not be embedded in the response, i.e. their

content will not be returned (until their own REST URL is requested in due course). Queries that

require the embedding of related nodes’ contents must instead be formulated using the GraphQL

interface.

A GET request to this URL will return the node object in json format, including properties that

contain a value. Properties consisting of a relation to other nodes do not contain deeper json

objects, but will contain the URL (CE API REST interface) or URLs to related node(s)

{

 "identifier": "88f82c5f-4a4f-4218-a395-6458443112a4",
 "image": null,
 "nodeValue": "http://api.trompamusic.eu/33bb51fb-ce7a-43f0-a39c-c4d1d25f5677",
 "additionalType": null,
 "valueReference": "CreativeWork",
 "name": "A music recording",
 "description": "This should be an existing TROMPA reference of a VideoObject or
AudioObject type",

D2.3_Technical_requirement_and_integration_v1

48

 "alternateName": null,
 "title": "A music recording",
 "type": null,
 "propertyID": "644b462f-35f3-4ee1-8204-82c98735fbb0",
 "value": null
}

RESTful POST, PUT, PATCH and DELETE requests will not be available, and will be covered by

functionalities provided through the GraphQL interface.

6. Integration of jobs and processes
As described in D5.1 Data Infrastructure and D5.3 TROMPA Processing Library, Music Information

Retrieval (MIR) technologies as developed in WP3, and Crowd-powered improvements as developed

in WP4 are ultimately to be `integrated with the CE. The provisioned functionalities of the CE, as

described and demonstrated in the previous chapters, allow for this integration; The CE data model

in combination with the CE GraphQL interface enables Component and ultimately (pilot) application

developers to create nodes in the CE database that could serve as jobs for WP3 and WP4

technologies to be picked up and processed.

In turn, WP3 and WP4 developers can set up a system to retrieve those jobs, to be executed

against data referenced in the CE. After completion of the job, references to the results can be

written back as nodes in the CE database. Subsequently, relations can be created between those

results and the larger TROMPA data set. Taken together, these functionalities constitute an

important part of the integration envisioned for WP5 and create a technical basis for the crowd

powered enrichment as envisioned for the TROMPA project.

This approach demands quite some coordination between (pilot) application, Component and

WP3/4 developers and a likely outcome is different approaches and practices for each combination

of pilot/Component and WP3/4 technology and duplication of efforts. Some developers might be

tempted to leave the CE out of the loop and create direct access between Component and WP3/4

technologies, putting aside the chance to enrich the TROMPA dataset with user generated content

on the basis of public data contained in the CE.

To mitigate and minimize this risk, and to make it easier for TROMPA participants and 3rd party

developers to contribute rich functionalities to the TROMPA project in a scalable way, a generic

solution is created for Component-CE-WP3/4 integration. This solution, as presented in this chapter,

provides a standardised method for task/job creation and retrieval and allows both Components and

WP3/4 systems to handle jobs in real time or in batches in asynchronous fashion. This not only

addresses the needs of most Component and WP3/4 developers to integrate their work with the CE,

but also ensures that WP3/4 produced data is contributed to the TROMPA dataset.

6.1 Generic solution overview

At its most basic, the process to be automated is as follows:

❖ Component user chooses target content, referenced in CE database

D2.3_Technical_requirement_and_integration_v1

49

❖ Component user creates a job to run a process on this content

❖ Process picks up job

❖ Process executes job on target content, creating and storing a result

❖ Process writes reference to result in CE database

❖ Component picks up result

❖ Component user consumes result

A subscription mechanism, as described in section 4.4, can enable both Component and Process

system to be actively updated on job creation and status updates in real time (or by http polling).

This way, the CE becomes the intermediary of Component-WP3/4 interactions. This offers a

standardized solution for integration and ensures WP3/4 produced data is referenced and gets

interlinked with the larger TROMPA dataset.

Figure 6.1

6.2 Data model

The generic Component-CE-WP3/4 interaction solution is based on a schema.org compatible data

model that can be broken down into three parts:

D2.3_Technical_requirement_and_integration_v1

50

https://graphql.org/blog/subscriptions-in-graphql-and-relay/
https://schema.org/

❖ Template nodes - maintained by WP3/4 developers - used by Component(s)

❖ Instance nodes - created by Component(s), maintained by CE

❖ Public nodes - representing the (public) content on which the WP3/4 process is done and the

results

6.2.1 Template nodes

Figure 6.2

Each WP3/4 process application, e.g. an alignment tool, will need a SoftwareApplication node in the

database. This is a node that can tie a number of available algorithmic processes to one of the

TROMPA participants or to a software bundle.

Each of the available algorithmic processes needs to be represented as a EntryPoint node. This

entry point corresponds to a user interface that enables a user to request, monitor and control the

running of a process. An entry point is what is presented by the Component as an available

functionality, like the automatic analysis of a recording or the annotation of a digital score. The

EntryPoint needs to be related to the SoftwareApplication through the actionApplication property.

The ControlAction is the `template` for a user’s request for a certain process to be run and is

related to the EntryPoint through the potentialAction property. It is like a super-class for a potential

job that needs to be carried out by the process represented by the EntryPoint. For a process job to

be able to run, probably a number of parameters need to be passed along to tell the process on

what target data to act on, plus some parameters for tuning the process or naming of the results.

Any number of required or non-required scalar arguments (numbers, strings etc.) can be set up by

adding PropertyValueSpecification nodes and relating them to the ControlAction through the object

property. Required parameters that point to content available in the CE, like the video recording the

user needs the process to act on, can be specified by adding and relating a Property node through

the same object property.

D2.3_Technical_requirement_and_integration_v1

51

https://schema.org/SoftwareApplication
https://schema.org/EntryPoint
https://schema.org/actionApplication
https://schema.org/ControlAction
https://schema.org/PropertyValueSpecification
https://schema.org/object
https://meta.schema.org/Property

Together, these EntryPoint, ControlAction, PropertyValueSpecification and Property nodes

determine what the end user will interact with when requesting and controlling a process. This

model provides enough information to dynamically generate a process-specific user interface. A user

requesting a job through this interface will instantiate the model as a job request which can then be

picked up, followed and controlled by the user and by the algorithm process application.

6.2.2 Instance nodes

Figure 6.3

The CE GraphQL interface exposes a predefined mutation (RequestControlAction) that will create a

set of nodes based on the ‘template’ as presented in the previous chapter 3.2.1. In effect, the nodes

created by this request instantiate a ‘job’ in the CE database that can now be acted on, followed and

updated.

If the RequestControlAction request passes validation, it will create a ControlAction node that is a

copy of the ‘template’, plus one or more PropertyValue nodes, derived from the template property

nodes, that contain the parameters needed to execute the algorithm process. The thus created

ControlAction serves as the ‘job’ to be executed, and can now be followed and acted on by both the

requester (Component user) and the algorithm maintainer.

6.2.3 Public nodes

The starting point of most algorithm process requests will most likely be one or more (music)

content files that are already known in the CE database, or were just uploaded by the user. At the

process algorithm request (RequestControlAction), a PropertyValue node was generated that will

point at this selected content file reference through the nodeValue property.

After picking up and completing the ‘job’ by, for example, creating a result file at a public

location, the algorithm process application needs to create a reference node in the CE database for

this result file. It can then relate the ControlAction ‘job’ node to this result through the result

D2.3_Technical_requirement_and_integration_v1

52

https://schema.org/PropertyValue

property. To allow this result file to turn up in user searches, or offer it to a user who is about to

request the same algorithm process on the same source, it is suggested to interlink this new

reference to as many relevant nodes as possible. This interlinking is the responsibility of the

algorithm process application.

Figure 6.4

D2.3_Technical_requirement_and_integration_v1

53

6.2.4 End result

After a successful request-job-result cycle, the final constellation of nodes would look like this:

Figure 6.5

D2.3_Technical_requirement_and_integration_v1

54

6.3 Perspective of algorithm process application

For algorithm process maintainers (WP3/4), the first responsibility would be to enter the correct

‘template’ nodes into the CE database. If entered correctly, a Component can query for available

algorithm processes with GraphQL queries for EntryPoints (potential ‘jobs’). An EntryPoint and

related Property and PropertyValueSpecification nodes should contain enough information to

dynamically set up a UI for a job request.

With this EntryPoint set up, the algorithm process application can now detect whether a job is

requested. It can regularly query the CE database for new ControlActions derived from the

‘template’ ControlAction. Or it could subscribe to the creation of such ControlActions with a custom

‘ControlActionRequest’ GraphQL subscription, and be immediately notified of a new request over a

websocket connection.

After a new request came in, the algorithm process application can then retrieve the necessary

parameters and file(s) to act on and start writing back status or error updates on the ControlAction

node that represents the job request.

After the completion of the process, the result file(s) can be written to a public repository. The

URL to this result file can then be added to the CE database and the status of the ControlAction

updated to ‘complete’.

The result can now be consumed by the user and can be found through the CE GraphQL interface.

The algorithm process application can enrich the TROMPA dataset further by adding additional

relations between result file and source file references, as well as to any other relevant nodes in the

CE database. Those relations could for example be a about or encoding relation between result and

source, or a generatedBy relation to the SoftwareApplication. This would greatly improve the

chances that subsequent users find and re-use the result file.

6.3.1 GraphQL queries

Following are examples of the GraphQL queries relevant for maintainers of algorithm process

applications. The examples were made using the default playground environment, which provides

rich features for experimenting with and test GraphQL queries. Apollo offers a number of software

libraries that can help integrate GraphQL in an application.

6.3.1.1 Create and maintain template nodes

This section corresponds to the node data model presented in 6.2.1

D2.3_Technical_requirement_and_integration_v1

55

https://github.com/prisma/graphql-playground#usage
https://www.apollographql.com/docs/react/

Create SoftwareApplication

Figure 6.6

This node will allow to group a number of EntryPoints under the same name. For example, the

Verovio software bundle offers a number of commands to run. Each Verovio command to be made

accessible to Component users should have its own EntryPoint, each related to the Verovio

SoftwareApplication node through the actionApplication property. Adding metadata fields will help

users searching for available functionalities of a specific software package.

Create EntryPoint

Figure 6.7

Create actionApplication relation between SoftwareApplication and EntryPoint

D2.3_Technical_requirement_and_integration_v1

56

Figure 6.8

Create (template) ControlAction

Figure 6.9

This ControlAction node will be the model for the ‘job’ created when a user does an algorithm

process requests. Each request will result in a copy of this ControlAction node to be created

(instantiated) which will then represent the ‘job’ that can be acted on and followed. The default

actionStatus for a newly instantiated ControlAction ‘job’ can be set here.

Create potentialAction relation between EntryPoint and (template) ControlAction

Figure 6.10

D2.3_Technical_requirement_and_integration_v1

57

Create Property (template for a relation parameter for a CE reference to a source file)

Figure 6.11

Each template ControlAction will probably have at least one parameter that will act as a pointer to

an existing node in the CE database, probably referencing a content file at some public repository.

The rangeIncludes property accepts an array of possible node types for this content reference and

can be used by the Component developer to limit the type of nodes (content types) that can be

selected.

Create PropertyValueSpecification (template for a scalar parameter)

Figure 6.12

Each PropertyValueSpecification defines a scalar input parameter that the Component user should

be prompted with when preparing the request for an algorithm process job. There are numerous

properties that can be used to set requirements, type and limits for a scalar parameter. With these

properties, a Component developer can set up the input field for this parameter.

Create object relation between (template) ControlAction and PropertyValueSpecification (similar

to relation to Property)

D2.3_Technical_requirement_and_integration_v1

58

Figure 6.13

Query the resulting template model

Figure 6.14

Leaving out the identifier from the query will list all available EntryPoints, or available algorithm

processes that could be offered to Component users.

D2.3_Technical_requirement_and_integration_v1

59

6.3.1.2 Monitor and update instance nodes

This section corresponds to the node data model presented in 6.2.2.

Subscription to RequestControlAction requests, on the basis of the EntryPoint identifier

Figure 6.15

This subscription will set up a websocket connection to the CE api, which will receive a notification of

a ControlAction being created on the basis of the EntryPoint template subscribed to.

It is also possible to query for ControlActions created on the basis of a certain EntryPoint (target

property) by adding the targetIdentifier query parameter:

Figure 6.16

The ControlAction identifier thus retrieved can be used to query for the ControlAction details:

D2.3_Technical_requirement_and_integration_v1

60

Figure 6.17

This template should be set up in such a way that sufficient information can be retrieved from this

query to allow the process to be run.

Once received, the algorithm process application could immediately acknowledge the reception

by updating the ControlAction:

Figure 6.18

6.3.1.3 Complete the request response cycle

This section corresponds to the node data model presented in 6.2.3. Once the process has

completed, the algorithm process application should write the result to a public location and add a

reference to this result in the CE database:

D2.3_Technical_requirement_and_integration_v1

61

Figure 6.19

With the identifier obtained from the response of the DigitalDocument creation, create a result

relation between ControlAction and the produced file:

Figure 6.20

When the algorithm process application now updates the ControlAction actionStatus, the process

request response cycle will be complete:

Figure 6.21

D2.3_Technical_requirement_and_integration_v1

62

6.4 Perspective of Component

The goal of WP5 is to create an environment for mid-level integration of components that will be

further exploited in WP6 pilots. In order to do so, the data produced in WP3 (musical repertoire,

automatic descriptions and generated audio) and annotations delivered through WP4 need to be

made accessible and usable in reusable components, meeting common standards.

Component developers can query the CE database for EntryPoints that could potentially be

interesting for its users. By implementing a user interface on the basis of the information in the

(dynamic) template nodes Property and PropertyValueSpecification, the algorithm process (WP3/4)

would become available for a user.

After a user request is sent to the CE API, the Component could set up a subscription to the

instantiated ControlAction via websocket to any mutations to the created job. The CE would notify

the Component of any updates done on the job, most likely by the algorithm process application. It

is up to the algorithm process application to determine how fine-grained these updates are.

The Component can show these updates in its UI and act on process completion by making the

results available to the user.

With the available result known, the Pilot could create additional relations from this result to

other relevant nodes in the CE database, like isBasedOn to a MusicComposition or copyrightHolder

to an Organisation. This would greatly improve the chances that subsequent users find and re-use

the result file.

6.4.1 GraphQL queries

Following are examples of the GraphQL queries relevant for Component developers. The examples

were made using the default playground environment, which provides rich features for

experimenting with and test GraphQL queries. Apollo offers a number of software libraries that can

help integrate GraphQL in an application.

6.3.1.1 Query for available algorithm processes

This section corresponds to the node data model presented in 6.2.1

D2.3_Technical_requirement_and_integration_v1

63

https://github.com/prisma/graphql-playground#usage
https://www.apollographql.com/docs/react/

Query for available EntryPoints:

Figure 6.22

There should be sufficient information to dynamically create a UI in the frontend.

6.3.1.2 Monitor instance nodes

This section corresponds to the node data model presented in 6.2.2. Once a user has chosen a

potential job to run, selected the right content and dialed in the parameters, the following request

can be made:

D2.3_Technical_requirement_and_integration_v1

64

Figure 6.23

With the returned identifier, the Component can set up a websocket subscription to be informed of

any updates on the ControlAction ‘job’:

Figure 6.24

Every time this ControlAction gets updated, the Component will receive a notification, and the

Component UI can be updated accordingly:

D2.3_Technical_requirement_and_integration_v1

65

Figure 6.25

It is of course also possible to regularly poll the ControlAction for any changes:

Figure 6.26

6.4.1.3 Complete the request response cycle

This section corresponds to the node data model presented in 6.2.3. Once the ControlAction status

has notified it is ‘complete’:

Figure 6.27

The Component can then fetch the URL of the result (source property) by querying the

ControlAction.result property:

D2.3_Technical_requirement_and_integration_v1

66

Figure 6.28

And make it available to the user.

6.5 Perspective of CE

The role of the CE in this mechanism is to maintain the data model and custom mutations that will

enable Component and process algorithm application developers to create and follow

ControlActions that effectively behave like jobs. This model should allow Component-WP3/4

interactions to take place as frictionless as possible, yet assuring the CE retains the position of

middleman for all these interactions, as this is what ensures that user-interactions and process

results lead to meaningful contributions the larger TROMPA dataset.

If the current model or custom functionalities present limitations, CE developers should consider

to fix or extend CE api code in consultation with participants at the earliest opportunity. Backwards

compatibility should be maintained with an effective versioning strategy.

7. Integration of frontend components
One of the core ideas of the project is that generic components can be reused in different pilots and

end-user applications. At this point, we distinguish the following frontend (as in browser application)

components that could and should be reused in the first release of pilot applications in M24.

❖ CE Multimodal component . This is a React library that can be re-used in a React Javascript 3

project to have easy access to common search queries to the CE and visualisation of results

of objects stored in the CE, currently implemented (v0.1.0) are searches for works, persons

and scores. Additional search features can be added as pilots require them. The multimodal

component will become available through package manager NPM (public archive) and Yarn.

The component can be used as an overlay or inline to search for items in the CE-API. When

an item is clicked, the component will notify this to its parent component using a callback

prop with the details of the item. The component allows developers to develop custom

facets and filters. The custom facet uses a separate GraphQL query or a fixed list of possible

options. When a user enables a facet, the selected option will be given to the GraphQL

3 https://github.com/trompamusic/ce-multimodal-component

D2.3_Technical_requirement_and_integration_v1

67

https://github.com/trompamusic/ce-multimodal-component

function. This makes it possible to use the active facets in the final search query. There are

four possible levels of integration of the CE Multimodal component:

➢ Access to a set of common GraphQL queries that can be configured using

parameters.

➢ Adjust the query that is being used in the CE Multimodal component.

➢ Reuse a visual component to provide an input for users and perform these searches.

➢ Change the appearance of the CE Multimodal component search results.

❖ CE Digital Score Edition component . This is a React library that can be used to render MEI 4

scores as SVGs within a web client, and supports the creation and viewing of annotations

upon the score.

Other components might be defined during the project. We agreed that the frontend components or

libraries that could be of use to TROMPA partners should comply with the following technical

requirements:

❖ The React component can be used with the latest version of React.

❖ The URL of the GraphQL endpoint targeted by the CE-API should configurable without the

need to compile from source.

❖ The React component will accept props to control the behavior of the component.

❖ The React component can be used as a Controlled Component . 5

❖ The React component can be styled using a ThemeProvider which supports overwrites using

JSS.

8. Conclusion
In this deliverable we specified the strategies for technical integration of data generated by different

technologies. The document is written for a technical audience and should have provided practical

information and guidelines for developers and researchers on how to integrate with the Contributor

Environment (CE). It is expected that the document is further updated and improved after its initial

submission.

The main contents of the document started (section 2) with a detailed overview of the internal

data model of the TROMPA Contributor Environment (CE). In section 3 it described best practices for

setting properties and relations when managing data in the CE in the form of guidelines. In sections 4

and 5 the interfaces for interacting with the CE were documented. In chapter 6 it was explained how

the job workflows and processes that are developed in WP3 and WP4 can be integrated with the CE.

Section 7 provided requirements for the frontend components that can be reused in different

end-user pilots.

The deliverable provides all the information needed for the partners of TROMPA to develop their

integration with the CE and develop the first prototypes of the pilots.

4 https://github.com/trompamusic/DigitalScoreEdition
5 https://reactjs.org/docs/forms.html#controlled-components

D2.3_Technical_requirement_and_integration_v1

68

https://github.com/trompamusic/DigitalScoreEdition
https://reactjs.org/docs/forms.html#controlled-components

9. References

9.1 List of abbreviations

Use the following table format

Abbreviation Description

UPF University Pompeu Fabra

TUD Technische Universiteit Delft

GOLD Goldsmiths College

MDW University of Music and Performing Arts Vienna

VD Video Dock BV

PN Peachnote GmbH

VL Voctro Labs, S.L.

RCO The Royal Concertgebouw Orchestra

CDR Stichting Centrale Discotheek Rotterdam

MCM Music Connection Machine

IMSLP Petrucci Music Library (IMSLP.org)

MOOC Massive Online Open Course

MEI Music Encoding Initiative

RDF Resource Description Framework

API Application Programming Interface

GDPR General Data Protection Regulation

D2.3_Technical_requirement_and_integration_v1

69

