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Executive Summary 

In this document, we present work on visual score analysis that has been performed in the context                 

of the TROMPA project. We describe existing systems and our experience with them, as well as                

techniques that we have created and implemented as alternatives to existing optical music             

recognition (OMR) systems. 

Sheet music plays an important role in Western music, and considering currently available online              

public-domain resources, many PDF documents with sheet music scans can be found. While             

musicians already extensively play from such scores, they also have important potential for             

increasing digital music accessibility and enrichment, e.g. by being synchronized to recordings, by             

becoming searchable for motives or patterns, or by being offered as a flexible digital edition allowing                

for annotations. Such applications all will require the extraction of musical information from the              

visual information in the scanned score. At the same time, they may not all require for a full OMR                   

pipeline to be run (i.e., going from a full PDF to a full transcription). Furthermore, considering                

TROMPA’s interest in human-in-the-loop approaches, rather than running full OMR pipelines which            

will always need post-correction, other hybrid annotation workflows (as also discussed in D4.4) are              

possible in which intermediate output of an OMR pipeline can already be transcribed, corrected or               

annotated. This deliverable also focuses on extracting such intermediate outputs from a PDF file,              

which is the most common container format for digital sheet music. 

In Section 3 we describe the general state of existing OMR systems and how they can find their                  

place within TROMPA. We show how OMR applied to early music prints can be used for                

content-based searching of large collections and how this might be adapted as a general              

music-search strategy for TROMPA resources. 

Considering intermediate output, we discuss issues and challenges of efficiently extracting raster            

image data from PDFs. Subsequently, we discuss various techniques to extract measures from score              

pages: visually structured information units within a page, for which the information extraction             

could be done automatically, or alternatively through embedding in human-in-the-loop frameworks.           

We discuss how measure extraction can both be done with deep learning based models, as well as                 

knowledge-based methods employing more traditional image processing techniques, which are          

lighter-weight and more transparent to run and tune. 

We furthermore discuss deep learning approaches that we have employed for recognizing coarse             

and fine notation elements. These approaches can be used for an end-to-end OMR system. This               

approach, although attractive, has its own challenges, which we discuss and which we deal with by                

introducing domain-specific information on the music notation structure and certain heuristics that            

take care of the tasks that are still challenging for deep learning models to robustly solve. 

Within TROMPA, the choice was made to offer digitally encoded music in the MEI format, both                

because of its scholarly and open origins, as well as for its flexibility in handling partial content, and                  

the possibility to embed it in enriched contents (e.g. in the MELD framework). Therefore, we discuss                

how (partial) visual analysis outcomes will be processed into the MEI format. Furthermore, we              

discuss how our visual analysis components are integrated in the broader TROMPA context,             

including connections to the human-in-the-loop workflows of WP4, as well as a set of RESTful APIs                

that can interact with the Contributor Environment. 
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1. Introduction 
A large portion of presently available public-domain digital music resources represents, or relates to,              

sheet music. Several notable online collections provide access to scanned images of sheet music in               

PDF format. While the PDF representation is sufficient for musicians to read and perform music, the                

PDF format does not encode music semantics. Therefore, the format does not easily allow for               

multimodal enrichment or content-based analysis. Therefore, to benefit from the musical meaning in             

large-scale digital sheet music collections, processing steps are needed to extract such meaning out              

of the scans. 

Traditionally, this would involve the use of Optical Music Recognition (OMR) systems. However,             

OMR systems are known to be imperfect, and may not be easily integrated in more scalable and                 

generic workflows. Therefore, as part of research efforts under TROMPA’s WP3, we have both              

investigated existing OMR systems, but also developed new techniques to process and extract visual              

musical content from scans of scores. 

In doing this, we will not only focus on functionality to implement a full OMR pipeline, but also on                   

functionality to yield intermediate output, that can subsequently be processed and corrected in a              

human-in-the-loop fashion, thus connecting to efforts in WP4. 

The remainder of this deliverable is structured as follows. Chapter 2 will discuss possible uses of                

visual score content that are relevant to TROMPA’s broader mission of enriching and expanding the               

accessibility of public-domain music resources. As different uses will have different functional            

demands, we also discuss to what extent full OMR would be necessary, or whether intermediate or                

rougher output may suffice. Subsequently, Chapter 3 describes how existing OMR functionality is             

currently being used as part of the workflow of music scholars. After this, Chapter 4 describes                

pre-processing techniques that convert PDF scans to intermediate representations (i.e.          

representations that do not yet include fully transcribed music, but extract meaningful structural             

elements from a score). Such intermediate representations can be included in human-in-the-loop or             

separate automated frameworks. Chapter 5 follows up with a discussion of efforts towards deep              

learning based music object detection. Then, Chapter 6 discusses how outcomes of Chapter 4 and               

Chapter 5 are integrated into the MEI format, which is TROMPA’s format of choice, due to its                 

scholarly and open origins, as well as for its flexibility in handling partial content, and the possibility                 

to embed it in enriched contents (e.g. in the MELD framework). Chapter 7 discusses how the                

outcomes of this deliverable are integrated and accessible in the broader TROMPA context, after              

which Chapter 8 provides a conclusion. 
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2. TROMPA-relevant uses of visual score information 
Visual score analysis results can be useful for multiple tasks. Some require notation element level               

granularity, for others only large-scale features of music notation, such as systems and measure, are               

relevant. In the following we briefly discuss various use cases within TROMPA that benefit from               

visual score analysis, as well as different levels of sheet music representation that can be provided                

by various OMR approaches. 

 

2.1 Use cases benefitting from OMR 

One motivating use case for OMR in the context of TROMPA is the creation of digital score editions.                  

In order to bootstrap this process we would like to use as many existing score editions as possible                  

(most digitally available editions are available only as scans). Converting scans of editions in the               

public domain into a digital music notation format that can be further improved upon can relieve the                 

need for the people creating the digital editions to start from a blank slate. Instead, only the OMR                  

errors and the edition errors would need to be manually fixed. When there is only one human                 

editor, this approach is useful only if fixing the OMR errors can be done quicker than typesetting the                  

complete score from scratch by hand. If the process is crowdsourced, however, to an audience that                

is less proficient in typesetting, even significant error rates may still facilitate the requested tasks.  

Typically, scholarly editions are created using proprietary tools such as Finale or Sibelius, or open               

encoding standards - such as MEI, which is specifically developed with scholarly use-cases in mind.               

We discuss MEI and its use as an OMR output format in more detail in chapter 6. 

Further use cases that can benefit from OMR results are score matching (linking multiple editions               

together), which can be very useful to scholars and musicians comparing different editions of the               

same work, score similarity (ability to easily find works similar to a given work), which can be used as                   

an exploratory tool by scholars, musicians and music enthusiasts alike, search by musical content or               

notation (using score similarity to query particular score excerpts), and audio-to-score linking (as for              

example implemented in the TuttiTempi performance comparison tool that we have previously            

developed; see also D3.5 on multimodal music information alignment). 

 

2.2 Levels of sheet music representation 

While some (particularly, commercial) OMR systems aim to generate complete digital           

representations of sheet music, some use cases can benefit from more limited intermediate music              

representations. 

If one is interested in slicing scanned scores so that they better fit on screens of different sizes,                  

knowing where the systems are on a page can be sufficient. Highlighting particular measures can be                

useful in the context of audio-to-score playback synchronization. If one is interested in search and               

similarity, one can use the positions of music notation elements on the page without having to                

generate a complete digital score encoding. 

In the following chapters we discuss approaches that can be used to derive these              

representations. 
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3. Existing OMR systems and their use within TROMPA 

3.1 Overview 

Although relatively accurate OMR programs have been available on the market for around two              

decades, the lack of commercial incentive (in terms of likely profits) has meant that very little                

significant investment has been made in this technology. It has, however, occasionally been adopted              

as a case-study in research within standard computer-science disciplines such as image recognition             

and pattern detection, sometimes enhanced with such AI techniques as machine-learning and, most             

recently, deep learning. The latter, in particular, shows great promise for moving the technology              

forward, but demands an enormous effort in providing comprehensive coverage and sufficiently            

large numbers of examples of ‘ground-truth’ judgments on which such methods depend. Deep             

learning is beginning to yield very promising results in the very tricky domain of handwritten music.  1

The main difference between printed and handwritten music is that in the former case the glyphs                

(‘atomic’ graphical symbols used in the notation) are more likely to be consistent in appearance,               

since they are traditionally produced using either type characters or punches which by and large               

generate identical patterns for a given symbol. Written music symbols, on the other hand, can vary                

greatly, and rely on the reader’s or performer’s own perception, cognition, and experience to              

compensate for this lack of consistency. (In fact, some engraved music is more like handwritten               

music in this regard, since in the same way the method allows almost complete freedom to create                 

new or unusual symbols.) 

Commercial and open-source OMR software is almost exclusively trained on works produced by             

late 19th-century engravers working in cities such as Leipzig, Mainz or Vienna; this is associated with                

the output of music publishers such as Breitkopf und Härtel, Schott or Doblinger, who produced               

large quantities of music by the great composers for domestic and professional consumption. By and               

large, they are similar in appearance, with some ‘house style’ differences in detail, which makes the                

development of software for OMR somewhat easier than it would be for a full coverage of styles and                  

periods. However, the music of the 19th century and later becomes increasingly complex in terms of                

the texture expressed in the notation - especially so in the case of piano music, where multiple lines                  

of intricate music need to be accommodated on a pair of staves. Furthermore, the separation of the                 

music into voices is often deliberately disguised in an effort to make the music more ‘readable’ (that                 

is, more ‘human-readable’) by occasional infringements of the traditional ‘rules’ of music-engraving.            

While some OMR software can produce good results with clearly-printed and well-photographed            

pages, this becomes less true with decreasing image-quality and with increasing musical complexity. 

As a contribution within an earlier project (MetaMuse, Mellon Foundation, 2006) with Tim             

Crawford and others at Goldsmiths, Donald Byrd has codified many of the features of music notation                

that render it an extremely complex problem for image-recognition systems [2]. This work alone              2

shows why OMR has not been used as the means to increase dramatically the amount of encoded                 

music derived from historical collections of the world’s music libraries, as might be hoped. If               

automatic score-encoding mechanisms like this were possible, the search and discovery methods of             

1 These and other aspects of OMR are explored in [1] 
2 See also ​the two web-pages compiled by Donald Byrd​: Gallery of Interesting Music Notation (                

http://homes.sice.indiana.edu/donbyrd/CMNExtremes.htm ) and Extremes of Conventional Music       
Notation ( ​http://homes.sice.indiana.edu/donbyrd/CMNExtremes.htm​ ). 

 

TR-D3.4-Visual Analysis of Scanned Scores 

7 

http://homes.sice.indiana.edu/donbyrd/CMNExtremes.htm
http://homes.sice.indiana.edu/donbyrd/CMNExtremes.htm


Music Information Retrieval (MIR) would offer great advantages for the disciplines of musicology and              

music analysis, as well as for the general user, in making it possible to rapidly compare musical                 

passages from comprehensive resources covering large proportions of the historical repertory.           

Furthermore, as intended as an outcome of TROMPA, the preparation of new editions of the               

standard repertory based on OMR’d public-domain materials would be made much easier. 

 

3.2 OMR for Early Music 

On the other hand, within specialised domains, such as early music, whose OMR requirements may               

be simpler than the general case, conventional methods such as pattern matching can yield reliably               

good results where the range of symbols is limited. Such is the case in 16th- and 17th-century                 

typeset music (vocal or instrumental), and researchers at Goldsmith’s have long-term experience in             

this field. In a third phase (2006-11) of the Electronic Corpus of Lute Music (ECOLM) project,                3 4

Crawford and others carried out a number of experiments on printed lute tablatures using OMR               

systems based on Gamera, showing that recognition accuracy of the typeset glyphs well over 90% is                5

possible given good quality images of well-printed original sources. While this still requires a good               6

deal of manual correction, it means that much of the printed renaissance repertory of lute, cittern                

and guitar music can in principle be encoded semi-automatically in reasonable time. 

The specialist OMR program, Aruspix, developed by Laurent Pugin, was designed initially as a              7

bibliographical tool for detecting differences between printed examples of the same book of typeset              

music, but has the additional advantage of generating MEI output which captures the position of               

symbols together with their likely musical semantics. Pugin and Crawford presented an evaluation of              

Aruspix’s capabilities in [6]. 

Within the ECOLM project, a command-line version of Aruspix was developed to allow batch              8

processing, and is capable of recognising music within large numbers of typeset music page-images              

(taking about 1 second per page). This was used for experiments at Goldsmiths into MIR methods for                 

early music using the British Library’s Early Music Online (EMO) resource; around 250 books,              9

comprising about 32,000 pages of music, were subjected to OMR using Aruspix and an experimental               

ngram-based MIR system was used for retrieving pages similar at three levels: duplicate             

photographs; pages containing similar music; and pages containing closely-related music.  

A long-term aim of the ECOLM project was to investigate the possibility of cross-searching               

between early vocal-music sources and instrumental arrangements of the works within them in             

tablature. There are two major problems in this research: the voice-leading of music in lute-tablature               

is non-specific, so that extracting ‘horizontal’ lines of melody from the voices present in the tablature                

is a hard problem; secondly, the music in the arrangements tends to be elaborated creatively, so                

3 ​http://doc.gold.ac.uk/isms/ecolm/ECOLM_III_pres.pdf 
4 ​http://www.ecolm.org  
5 ​https://gamera.informatik.hsnr.de/index.html 
6 

https://www.researchgate.net/publication/281267395_From_Facsimile_to_Content_Based_Retrieval_the_Ele
ctronic_Corpus_of_Lute_Music 

7 ​http://www.aruspix.net  
8 ​https://github.com/DDMAL/aruspix  
9 

https://www.royalholloway.ac.uk/research-and-teaching/departments-and-schools/music/research/research-
projects-and-centres/early-music-online/  
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that the original vocal lines are often very hard to detect computationally. Work by Dr. Reinier de                 

Valk using machine-learning techniques - partly carried out at Goldsmiths - has led to much               

improvement in both aspects [7][8].  

 

3.3 Applications of OMR: Full-Text searching of Early Music Online          

(F-TEMPO) 

Continuing within TROMPA, and in parallel with such recent OMR developments, Crawford at             

Goldsmiths has developed F-TEMPO (Full-Text searching of Early Music Prints Online), a highly             10

scalable and efficient method for MIR which uses a novel feature extracted from the              

Aruspix-generated MEI, Minimal Absent Words (MAWs). This currently searches over 500,000           11

pages of early music in under one second, and would also be suitable for use with conventional                 

(modern) music notation recognised using an OMR system such as Audiveris on the public-domain              

sources within TROMPA. Using F-TEMPO’s RESTful API, TROMPA will be provided by the end of the                

project with a music-content retrieval facility using F-TEMPO (suitably adapted) as an external task              

within the CE. (NB the current version of F-TEMPO does not use or return source metadata, though                 

this will shortly be provided in the next phase of development.) 

The feature-extraction and indexing that enables F-TEMPO is carried out in the following steps:              

image-preparation (verifying image-quality; conversion into TIFF images; splitting two-page spreads          

into single pages), recognition (processing each page-image with the command-line version of            

Aruspix, which first segments the image into text, graphics and music staves, then crops and               

binarizes the latter, and generates a compressed ‘axz’ file containing a copy of the black-and-white               

binarized and cropped page-image, locations and other details of the segmented page-regions and             

the recognised music both in an internal format and in MEI) and indexing (a continuous character                

string representing the diatonic interval-sequence derived from the MEI is extracted, then MAWs are              

further extracted, using open-source software developed by Solon Pissis, and saved together with             12

an ID code for the page). Run as an offline batch process, this takes an average of approximately 7                   

seconds per image. At present there is no attempt to separate music and non-music pages, with the                 

result that sometimes Aruspix generates ‘recognised music’ output from non-music pages, such as             

title-pages or tables of contents. However, since this very rarely has any musical coherence, it only                

occasionally produces misleading false positive retrieval results. It is hoped that in the near future,               

by using specialist algorithms in the pre-processing phase for the purpose, a considerable proportion              

of such non-music pages can be eliminated from indexing. 

Retrieval using the F-TEMPO web-interface is achieved by a simple count of the MAWs in               

common between a query page and the pages of the entire collection; this linear process is made                 

more efficient by distributed processing, currently involving 27 virtual servers each handling up to              

approximately 30,000 pages each. At query time, the identical query is sent to each server and                

truncated best results from each are concatenated and re-sorted using Javascript within the user’s              

web browser; typical queries take around a second, though delays in presenting the user with               

images from the collection can be caused by network latencies beyond the system’s control. A               

10 ​http://f-tempo.org  
11 Roughly speaking, minimal absent words are a small subset of the words that are not present in a                   

document having the property that if a single character were to be removed from their beginning or end, the                   
resulting substring would be present in the document. A useful introduction to MAWs can be found in [3].  

12 ​https://github.com/solonas13/maw  
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further facility is the possibility of uploading an image to the main F-TEMPO server and using this as                  

a query to determine whether the same music is represented in the collection; this can be used to                  

identify otherwise unknown music in a user’s image which lacks metadata. 

At present the API for F-TEMPO (based on HTTP POST requests) can be used to perform searches                 

with two types of query: one of the internal page-IDs (so that, for example, a sequence of results for                   

multiple pages can be recovered and analysed in a further offline process); or a diatonic interval                

string in the format used described on the F-TEMPO website at ​http://f-tempo.org​. In the near               

future, it is intended that searches for uploaded images can be done via the API, e.g. for batch                  

processing. The API returns results in the JSON format. 

As examples, here are two commands which can be used on a Unix-like system to recover results                 

for the same page of music by Orlando de Lasso from F-TEMPO; in both cases, the query page is                   13

itself the first ‘hit’. (Other information returned: the number of MAWs in common, “num”; the total                

number of MAWs in the target page, “num_words”; and the Jaccard distance between the pages               

based on these numbers, “jaccard”.) Results are ranked by decreasing Jaccard distance (by count of               

common number of MAWs): 

1. Query by internal F-TEMPO ID (on one line): 

curl -s -d '{"id":"D-Mbs_bsb00091845_00488","num_results":"5"}' -H "Content-Type: 

application/json" -X POST http://f-tempo-mbs.rism-ch.org/api/query 

… produces JSON: 
[{"id":"D-Mbs_bsb00091845_00488","num":43,"num_words":43,"jaccard":0.022727272727272707},{"

id":"D-Mbs_bsb00089980_00398","num":19,"num_words":50,"jaccard":0.7466666666666666},{"id":"

D-Mbs_bsb00084674_00632","num":11,"num_words":41,"jaccard":0.8513513513513513},{"id":"D-Mbs

_bsb00071839_00241","num":9,"num_words":34,"jaccard":0.8695652173913043},{"id":"D-Mbs_bsb00

071986_00121","num":9,"num_words":43,"jaccard":0.8846153846153846}] 

 

… which may be interpreted as this ranked list: 
1 D-Mbs_bsb00091845_00488 0.022727 

2 D-Mbs_bsb00089980_00398 0.746667 

3 D-Mbs_bsb00084674_00632 0.851351 

4 D-Mbs_bsb00071839_00241 0.869565 

5 D-Mbs_bsb00071986_00121 0.884615 

 

2. Query by diatonic interval string (or ‘codestring’): 
curl -s -d 

'{"codestring":"-CcDcaBcDcacabDaC-cCjGacAdAyC-cDCbcAAdCaA-cAcAcAacAcAaud-B-a--AcAcCu","num_

results":"5"}' -H "Content-Type: application/json" -X POST 

http://f-tempo-mbs.rism-ch.org/api/query 

… which produces identical JSON to the ID query above. 

Note that in the latter case, editing, correcting or otherwise altering the codestring will often               

produce very similar best matches. However, there is a minimum length of codestring from which               

MAWs can be generated, so this is not generally useful for searching for short passages such as                 

musical motifs or incipits. By substituting conventional textual ngrams for MAWs in an alternative              

index, shorter queries can in fact be accommodated; this has been tested with experimental versions               

of F-TEMPO but has not yet been implemented for the full database because of the extra                

programming necessary to provide match-locations within a page - this will come in the next phase                

of F-TEMPO development. 

13 ​Bass part of the chanson, ‘Comme la tourterelle’, from the 1570 collection, ​Mellange D'Orlande               
De Lassvs, Contenant Plvsievrs Chansons, Tant en Vers Latins Qv'en Ryme Francoyse. A Qvatre, Cinq,               
Six, Hvit, Dix, Parties​ (copy in the Bayerische Staatsbibliothek, Munich) 
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3.4 Future work on F-TEMPO 

For use with conventional modern music notation, an OMR program, such as the open-source              

Audiveris, could be used in the indexing process in place of Aruspix, as long as it outputs recognised                  14

music encoded as MusicXML or MEI, from which it is trivially easy to derive the F-TEMPO indexes. 

A further enhancement to F-TEMPO, on which we have carried out some preliminary trials, would               

be to use the open-source OCR program Tesseract to recognise fragments of text from the               

lyric-syllables underlaid beneath the notes in the printed music. The location of all such              

text-fragments is reliably computed by Aruspix, but as they are almost certain to be incomplete as                

words, the normal recognition algorithm in Tesseract (which makes use of standard language             

dictionaries, including Latin) does not much enhance recognition, although this step can be             

bypassed. By concatenating the recognised text-fragments from a page, an alphabetic string (similar             

in some respects to the kind we derive from the MEI) can be used for indexing purposes. Our                  

informal experiments used this principle on works which set the standard liturgical Latin texts likely               

to be found in the ​Liber Usualis​; we cross-searched the online version of the ​LU with our indexes                  15

and were able to detect matches in most cases, although a good deal more work is needed to make                   

the process robust and generally useful. In particular, the wide variety of fonts and glyph-shapes               

used by 16th-century printers (further complicated by the frequent use of abbreviations to save              

horizontal space) can often be severely damaging to recognition accuracy; as a consequence, the              

current state of OCR is not very helpful for reconstructing full underlaid texts to anywhere near                

scholarly standards, although it remains useful for the limited task of document indexing. 

  

14 ​https://github.com/Audiveris/  
15 ​https://ddmal.music.mcgill.ca/research/omr/Search_the_Liber_Usualis/  

TR-D3.4-Visual Analysis of Scanned Scores 

11 

https://github.com/Audiveris/
https://ddmal.music.mcgill.ca/research/omr/Search_the_Liber_Usualis/


4. Pre-processing to structural intermediate output 
Currently-available OMR systems are not at a performance level to allow out-of-the-box application             

to scalable, varied repertoires of interest. Some of them are specialized to particular repertoires (e.g.               

Aruspix is specialized in Early Music), while in general, post-correction of outcomes is almost always               

needed, especially for more complex scores. 

Considering TROMPA’s interest in human-in-the-loop approaches that can serve as wide of an             

audience and as many public-domain repertoires as possible, it may not be required to implement a                

full OMR pipeline, in which a scanned score PDF is given as input to a black-box system, with a full                    

score transcription as the result. Instead, intermediate outputs of an OMR pipeline may be              

considered, on which partial recognition, transcription or correction steps can be applied. In this              

chapter, we describe how intermediate output describing visually structured elements (page images            

and measures) within a score are being generated within the TROMPA project, where the next               

chapter will focus on musical object detection. In the current chapter, first, we discuss how               

conversion is done from PDFs to raster images. Subsequently, we describe efforts to extract              

measures from scanned score images, which are used in the context of WP4, in particular the Hybrid                 

Annotation Workflows, as reported on in D4.4.  

 

4.1 From PDFs to raster images 

While sheet music is often stored in PDF files, usually, OMR systems expect raster images as input.                 

Also for our intermediate processing purposes, raster images will be used as the main source of                

visual content. Commonly, each page of the PDF should be converted into an image. 

Extracting raster page images from PDFs containing scanned sheet music is not completely              

straightforward. Open-source libraries such as ​pdf2image in Python can extract JPEG images from             

PDF files. The extracted images are sufficient for the measure detection tasks described in the               

current chapter. However, the deep learning based musical object detection techniques described in             

the next chapter have higher demands, and require the extraction of lossless PNG images. 

The PDF format is actually complex: PDF pages may contain (potentially multiple) raster images,              

vector images, or combinations of both. This can cause libraries that export the image contents of                

the PDFs to estimate the optimal image resolution incorrectly, producing either very coarse images              

(which results in information loss and reduced OMR accuracy, especially where small notation             

elements are concerned), or huge images (which may significantly slow down or crash the export or                

the downstream processes) when exporting the images for further processing. 

It is important to export the raster images at their correct inherent resolution in order not to lose                  

information, and to render vector images at a sufficiently high resolution without overloading             

down-stream processes. A source of confusion may be either tiny raster images embedded in vector               

graphics (e.g. a low-resolution background layer), with the rendering algorithm mistaking the            

dimensions of the raster image as the page dimensions, or the vector images that are rendered with                 

at an exceedingly high resolution in absence of any raster reference. It is usually possible to specify                 

the target image dimensions without knowing the inherent dimension of the pages when exporting              

page images, but when applied to pages containing raster images this would often change their               

dimension, thus introducing an information loss. 
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So far, best results for lossless PNG image exports were achieved with commercial PDF libraries,               

in particular JPedal . Output from this library was therefore used for the work described in the next                 16

chapter. 

 

4.2 From images to measures 

The hybrid annotation workflows as described in D4.4—and generally, TROMPA’s vision of            

human-in-the-loop digitization efforts—require for more complex musical tasks to be broken down            

into smaller-scoped sub-tasks. Such sub-tasks can be framed as crowdsourcing tasks, which can be              

addressed in a distributed fashion. 

A main human-in-the-loop task of interest in TROMPA considers the transformation from PDF             

score scans to MEI transcriptions; in other words, the task that traditionally has been addressed in                

OMR. In a human-in-the-loop setting, the OMR need not be fully automated; on one extreme end,                

similar to existing crowd-powered initiatives like MuseScore’s OpenScore , the information in a PDF             17

score scan may be fully manually described by human experts. However, under a human-in-the-loop              

paradigm, this would be done with many human experts transcribing small parts of a score in a                 

distributed fashion, rather than one expert transcribing everything. At the same time, a similar              

workflow setup can be foreseen, in which transcription may be a partially automated (and possibly               

error-prone) procedure, after which human experts are requested to verify, adjust, or post-correct             

intermediate output. 

In all these situations, we wish to avoid operating on a full musical score; instead, we want to                  

scope down to the level of measures, and possibly even a single measure at a time, to break up and                    

simplify these tasks. This means we will need to perform measure detection. Considering the various               

use cases within TROMPA, repertoires of interest extend from early music to piano music and               

orchestral scores. In the latter case, full scores can be very complex from an OMR perspective, with                 

many parts playing at the same time. At the same time, content complexity of individual measures                

within orchestral parts usually will be much lower, and thus easier to oversee.  

  

4.2.1 Using an existing CNN-based measure detector 

We have evaluated the measure detector by Waloschek, Hadjakos and Pacha [4], which is employing               

a convolutional neural network (CNN) to detect measures in a scanned score. However, this detector               

has turned out suboptimal for our purposes. First of all, especially for orchestral music, the released                

CNN model was observed to make many mistakes, even for high quality scans with straight barlines.                

Examples of common errors of the model are visualized in Figure 4.1. Retraining the model would                

require considerable costly annotation efforts. As a second disadvantage, both in terms of storage              

and computational demands, the model is resource-intensive and slow to run, making it a              

considerable performance bottleneck, while the measure detection task itself seems reasonably           

simple. 

The model has a third disadvantage: it only can detect measures as blocks containing multiple               

voices or staves. While this is semantically justified (all voices within the block would have the same                 

measure number in a score), considering potential crowdsourcing tasks, a more refined            

segmentation will be needed than this, that also can separate individual parts or voices. This is                

16 ​https://www.idrsolutions.com/jpedal/  
17 ​https://musescore.com/openscore  
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desired to reduce the amount of information that will be displayed to a user at a time; showing a                   

measure with both systems of a piano score maybe comprehensible, but a measure encompassing a               

dozen of instrumental voices in an orchestra score may be too complex for the user to process, while                  

the information within each voice will be relatively compact. 

Figure 4.1​ Illustrations of common errors observed for the CNN method of [4]. On the left, multiple 

measures are wrongfully detected together as an extra single measure, while on the right, smaller 

subsections of measures are wrongfully detected as measures. 

Figure 4.2​ Structure of a score. 
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4.2.2 Knowledge-based image processing 

As an alternative to the CNN-based method, we have been researching a knowledge-based             

approach, rooted in more traditional image processing techniques. Considering a taxonomy of            

systems, blocks and measures, as illustrated in Figure 4.2, if multiple systems exist on the same page,                 

they are visually separated by whitespace. Blocks are separated from each other by a vertical               

barline. Within a block, each individual measure involves a staff with 5 horizontal lines. Thus, by                

considering how intensity patterns fluctuate in horizontal and vertical directions, it should be             

possible to extract measures in a more heuristic fashion. 

Before any segmentation is done, some standard pre-processing is performed on the page raster 

image. First, the contrast of the page is maximized, after which the page is binarized. Following this, 

any rotations in the page that might have occurred due to scanning of the original score are 

rectified. 

Following these steps, a top-down approach is followed in analyzing the page structure. First, 

systems will be separated, which are subsequently segmented into vertical blocks, which are then 

segmented into measures. 

The first segmentation considers musical systems. As there is visible and consistent whitespace in 

between systems, they do not have any connected components between them. Hence, when 

applying binary propagation to the image, each of the systems will be filled, allowing for easy 

detection of one or a few large blocks on the page, each of which is a system. 

Next, each of these systems are segmented into vertical blocks, making use of the horizontal 

intensity profiles of the system. The vertical barlines that separate blocks, span almost all of a 

systems’ height. Therefore, when considering a systems’ intensity profile over the horizontal axis, 

peaks occur whenever a vertical barline occurs. Thus, finding these peaks corresponds to finding the 

locations where a system should be segmented into separate blocks. After this step, the output will 

consist of blocks of measures, similarly to the CNN-based detector discussed in the previous 

subsection, but now obtained in a much lighter-weight fashion. 

After the blocks have been segmented, each block will be segmented into measures. There are               

currently two methods investigated for this correction: a smallest-intersection method, and a            

largest-region method. 

The smallest-intersection method works in two parts. First, considering the vertical intensity            

profile of the system, we consider subsequent groups of 5 small intensity peaks (signifying the 5                

horizontal lines in an individual measure). Treating a group of peaks as one broader peak, we choose                 

the middle point between these subsequent broader peaks as segmentation ‘baseline’. However,            

notes and annotations are not restricted to only occur within the 5 horizontal lines of a measure; in                  

fact, they can occur outside of these lines, and even get quite close to a measure right above or                   

underneath. To avoid for this information to be segmented wrongfully, we search within a              

predefined distance surrounding the ‘baseline’ for points with the least amount of horizontal             

information (i.e., many white pixels), and pick the point closest to the ‘baseline’ as segmenting point. 

The largest-region method departs from the same first step as the smallest-intersection method,             

but does not set a segmentation baseline. Instead, the space between broader peaks (corresponding              

to zones with 5 horizontal lines in an individual measure) is separated into empty regions, where                

regions are separated from each other in a threshold-based fashion. The largest region is chosen, as                

this indicates the largest ‘empty’ part between two measures. Then, the middle of this region is                
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chosen as the segmenting point. In Figure 3, two examples are given of segmentation results from                

the largest-region method. 

 

Figure 4.3​ Segmentation result examples obtained through the largest-region method. 
 

4.2.3 Future work 

The measure detector described in Section 4.2.2 is considerably lighter-weight and more transparent             

than the detector from Section 4.2.1. As such, we will prefer to continue working with this detector                 

in further integration tasks. At the same time, beyond current manual experiments on several              

dozens of pages from IMSLP orchestral symphony scores from the Classical and Romantic periods              

(Mozart, Beethoven and Mahler), there still is need of a more comprehensive and systematic              

evaluation procedure. 

Evaluation cannot be performed in an off-the-shelf fashion; existing bounding box annotation            

datasets do not contain many orchestral examples, and multiple alternative bounding boxes may             

differ in terms of absolute coordinates, but be equivalently good for the same measure.              

Furthermore, while not needing extensive training, our knowledge-based measure detector still           

needs for various thresholds to be tuned, which currently is performed manually. Therefore, for a               

more systematic performance diagnosis, we currently are developing additional benchmarking and           

evaluation tools that will allow for side-by-side comparisons of bounding box outputs, together with              

model (hyper)parameters. This will allow for the practitioner to comparatively examine outputs of             

alternative models and (hyper)parameter choices, connected to various possible performance          

metrics. 

In addition, the output of our measure detector is intended to be further used to refine task                 

generation and prioritization. Especially in orchestral scores, many measures contain highly similar            

information, that only may need transcription once (e.g., as an orchestra does not play tutti all the                 

time, there often will be full-measure rests in multiple parts). Therefore, if similar visual content can                
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be clustered, crowd work effort can be distributed among these clusters, rather than over individual               

measures that may be redundant. 

5. Deep learning approach 
Existing OMR software, such as Audiveris and SmartScore, produce MusicXML output, while not             

exposing the intermediate steps, such as the information on location of the identified music notation               

elements, which can be useful on its own as described in chapter 2.  

Commercial systems, such as SmartScore or PhotoScore, support only a GUI operation mode and              

do not support headless execution on a server, which makes them very difficult to integrate with any                 

other software components. 

Audiveris, to our knowledge the only open source OMR system targeting modern western music              

notation, by virtue of being open source, allows for inspection of its internal state and integration                

with outside software. In our experience, however, Audiveris suffers from a certain brittleness             

(crashing on a significant percentage of sheet music images drawn from a large representative              

sample, such as IMSLP) and inflexibility due to a lot of music notation rules being hard-coded in the                  

code. Besides, Audiveris does not utilize GPU acceleration, which could potentially speed up the              

OMR process by an order of magnitude. When dealing with millions of images, this is significant. 

In order to be able to take advantage of increased processing power provided by GPUs, to have                 

the flexibility of computing only the relevant information, to improve the stability, and to have the                

ability to finetune the OMR software according to our needs without depending on the OMR               

software vendors, we have developed our own OMR pipeline that addresses our needs better than               

the existing OMR systems. 

 

5.1 Recognizing notation elements in two dimensions 

We use generic object detection algorithms in order to recognize music notation elements in the               

images of sheet music. We use a custom synthetic dataset of about 10,000 images of piano music.                 

Hand-written scores are outside of our scope, but for printed notation we have achieved good               

performance (formal evaluation results are pending). 

We distinguish between semantically similar but visually distinct elements. For example, a            

quarter note with stem up and a quarter note with stem down are two different classes for                 

recognition purposes. In total we recognize 131 distinct classes of notation objects. In our              

experience such differentiation improves the overall recognition quality. 

We used Google’s TPUs for training due to a significantly higher performance and efficiency              

compared to a GPU setup. The current system has been trained for 5 days on one Cloud TPU v3. 

 

5.2 Converging 2D to 1D 

If one represents a music score in a digital file, the format is one-dimensional already due to the                  

nature of computing abstractions. And for music data formats, the dimensionality is one also by               

design - the data is stored as sequence of tokens, be it XML tokens as is the case for MusicXML and                     

MEI, or binary MIDI events together with little metadata describing the separation in simultaneous              

voices. Piano rolls are two-dimensional, but they can be represented canonically as a             
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one-dimensional sequence of note events that can potentially occur simultaneously, in which case             

they still can be ordered by pitch. 

Our goal is to provide a system that would automatically convert the set of 2-dimensional               

annotations into a linear score representation. We have been experimenting with an end-to-end             

deep-learning approach that aims at doing this. However, the fact that the XML output formats               

impose certain non-local restrictions on data (for example, XML’s tree structure must not be broken)               

makes robust application of these machine learning approaches challenging. A single error at a              

wrong place can make the whole output invalid. And unlike with HTML, for which extremely lenient                

parsers have been created that can gracefully handle all kinds of erroneous HTML, there are no such                 

parsers for MusicXML or MEI.  

In section 6.2 we describe a compromise approach that takes the annotations produced by the               

object detection module and then puts them into the MEI tree structure according to a set of                 

heuristics which, while being less flexible, guarantee syntactic correctness of the produced XML. In              

the meantime we continue to pursue a robust end-to-end approach that promises a higher accuracy               

once the robustness issues are handled. 

6. MEI handling 
The target digital music score format chosen in TROMPA is the MEI format. Beyond MEI being an                 

open format with scholarly roots, it also allows for scores to be partially populated with detailed                

content. As such, it is very well suitable for creating iteratively improving digital scores, departing               

from empty or partial input. In this chapter, we discuss how the visual analysis techniques discussed                

in the previous chapter relate to the MEI format and the establishment of digital score files. 

 

6.1 Merging measure information from different sources 

The measure detection steps as described in Chapter 4 are primarily intended to pre-populate an               

MEI skeleton with empty measures. The content of these measures should subsequently be filled in               

and improved upon. This can be done through various means; through fully manual entry, through               

more automated recognition methods, or by pre-populating the file with (possibly partial, and             

possibly imperfect) content obtained from another file, e.g. as the result of a black-box OMR system. 

Regardless of the procedure, in all cases, the intention is for obtained MEI information to be                

matched to the right elements, compared, and merged into a collective MEI score. For this, both in                 

case of larger files and single-measure input, we consider MEI as a representation of XML trees, and                 

apply tree-based alignment techniques. 

Alignment is not trivial, as the amount of elements in two comparison snippets may not be equal.                 

To this end, we apply pairwise alignment employing the Needleman-Wunsch algorithm [5], which is              

a dynamic programming alignment method from the bioinformatics domain, allowing for gaps in             

sequences to be aligned, to deal with potential insertions and deletions between sequences to be               

matched. Respecting the tree-based XML structure, this procedure is recursively repeated from the             

roots down the trees of the two snippets to be matched. 

In case multiple equivalent snippets are to be matched (e.g. multiple alternative transcriptions of              

the same measure), center star alignment is performed, in which one snippet will serve as center, to                 

which other snippets are aligned. 
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Subsequently, for the optimal found alignment between different snippets, consensus          

comparisons can be done for matching nodes, which will determine what information will ultimately              

be merged into the collective MEI score. 

Further details on the alignment and voting procedures, including worked examples, are available             

as GitHub documentation . In addition, an example walkthrough of how a skeleton is established              18

and how information is merged into it, is shown in an online demonstration video . 19

 

6.2 Converging 2D to 1D 

In section 5.2 we have discussed the difficulty of converting the 2-dimensional notation element              

information to the MEI format using an end-to-end neural network-based approach. A more robust,              

albeit less flexible approach to the problem of conversion from a 2-dimensional to 1-dimensional              

representation is as follows. First, one can recognize the most structurally important elements: the              

systems, measures and staves. Determining the containment relationships among them is easy if one              

has their relatively accurate coordinates. Second, one can ascribe the remaining notation elements             

to the staves, again using simple proximity calculations on the corresponding bounding boxes. The              

temporal ordering of the notation elements is defined by their horizontal ordering in the image. In                

order to figure out the pitch information of pitched elements one can use their vertical offset from                 

the staff and the staff height. The resulting MEI is valid and can be rendered to an image in a                    

browser. This is useful in crowdsourcing context which we describe in the following section. 

 

6.3 Crowdsourcing considerations 

MEI provides a convenient format for crowdsourcing the correction of both score element             

recognition and the translation from the set of 2-dimensional annotations into the proper MEI              

notation, since MEI contains both types of information in the same file. Thus, any update to either                 

2-d labels or the MEI content under the <music> tag can be submitted to the TROMPA Contributor                 

Environment and versioned in a version control system.  

Besides, since MEI can be rendered in the browser in real-time using Verovio.js , it is possible to                 20

present to the users the visualization of the MEI-encoded score side by side with the original score                 

image and the labels that have been recognized by the OMR system and possibly additionally               

corrected by the users. The users then can edit the automatically converted MEI code and see the                 

resulting rendering immediately.  

The same immediate interactivity is possible for the previous step - the editing of the               

automatically generated annotations. Using the 2-d information in the <facsimile> section of the MEI              

file it is possible to use one of many browser-based image annotation tools to edit the annotations in                  

place. The conversion of the 2-d annotations to the linear notation (in MEI) can be executed quickly                 

upon every update and followed by rendering of the MEI, so that the user can immediately see the                  

effect of their editing on the final result. This workflow would allow users who are not versed in the                   

MEI format and cannot edit the MEI score representation themselves to contribute to improving the               

OMR by correcting visual annotations while at the same time seeing the immediate effect of their                

18 ​https://github.com/cakefm/crowd_task_manager/wiki/Aggregator---Technical-Details 
19 ​https://drive.google.com/file/d/1cp_dWECMWRGB5ynuzWZZn-8_kSeF8-B-/view  
20 ​https://www.verovio.org/javascript.xhtml  
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actions on the current OMR result and visually inspecting it for any differences with the original                

image. 

7. Integration 
The visual analysis techniques discussed in the previous chapters are integrated or accessible to the               

broader TROMPA context in various ways, as described in this chapter. 

 

7.1 Measure detector 

Work on measure detection is instrumental to the crowd-powered music digitization pipeline, which             

is researched under WP4 and documented in D4.4, as well as the online GitHub wiki . A global                 21

sketch of the crowd task manager architecture is given in Figure 7.1; the work described in Chapter 4                  

of this deliverable falls under ‘Measure Detector’ and ‘Score Segmenter’, where the steps towards a               

unified MEI as described in Chapter 6 are part of the ‘Score Assembler’. As measure detection will                 

still improve, updated models will be included in the same architecture, and be documented on the                

wiki.  

 

 

Figure 7.1​ Architecture of crowd task manager 

 

 

21 ​https://github.com/cakefm/crowd_task_manager/wiki/  
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7.2 Image-to-MEI OMR API 

We have developed and deployed an OMR API that has two endpoints . The first takes a sheet                 22 23

music image and returns an MEI file that contains a 2-dimensional representation of notation              

elements recognized in the image (in the <facsimile> section), as well as the sparse semantically               

structured information (with proper order and containment) on systems, measures, staves and their             

children elements added to the staves in order from left to right (the elements, however, may lack                 

important information, like the note classes) in the <music> section. 

The second endpoint provides a convenient way of inspecting the OMR results: it takes a sheet                

music image and returns the same image with an overlay showing the recognized elements as               

colored rectangles along with their numeric certainty estimates. 

Given an image of a size up to 10 MB submitted to the REST endpoint at over a POST request, the                     

API returns an MEI file or an annotated image respectively. 

The MEI and image endpoints accept the “tags” query parameter that allows for filtering the MEI                

and image annotations by the MEI tags that the user is interested in. For example, appending                

“?tags=note,slur” to the URL will result in the MEI file containing only information about notes and                

slurs (although the system, measure and staff elements are always returned as well), and the               

visualization endpoint will only highlight those elements, which can be useful due to a potentially               

high number of elements recognized in the image (the current API returns up to 2,000 elements per                 

image) - see the Appendix B for an example of a complete visualization. 

The OMR API takes 0.6 seconds per page on a CPU, 0.08 seconds per page when using a Nvidia                   

2080 Ti GPU. 

The visualization endpoint also accepts GET requests along with an URL of the image that should                

be analyzed. This makes it possible to see in the browser the results of the OMR process on any                   

image available online by simply embedding an image with the source that includes the URL of that                 

image, like this: 

<img 

src="​https://alpha.api.omr.peachnote.net/omr/boxes/jpg?url=http://www.ga
memusicthemes.com/sheetmusic/personalcomputer/thesims/buildingtheme3/The

_Sims_-_Building_Theme_3_-_Since_We_Met_Sheet_Music_by_Pseudo_1.png​" /> 

 

22 This work used the EGI infrastructure with the dedicated support of the CESNET-MCC provider 
23 ​https://alpha.api.omr.peachnote.net/omr/mei 

https://alpha.api.omr.peachnote.net/omr/boxes 
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Figure 7.1​ ​Example source and annotated images 

 

Given a local file page.jpg the endpoint that returns MEI can be queried in bash using curl as follows: 

(echo -n '{"image" : ",'"$( base64 ./page.jpg )"'"}') | curl -H 

"Content-Type: application/xml" -d @- -X POST 

https://alpha.api.omr.peachnote.net​/omr/mei 

 

For examples of MEI output and a visual presentation of the extracted 2-dimensional information as               

provided by the API please refer to Appendices A and B. 

 

8. Conclusion 
In this document we have discussed the uses of visual sheet music analysis, its challenges, and                

presented the work on it done prior to and within TROMPA. We have developed a number of novel                  

components that are currently being integrated into the crowdsourcing workflow within the scope             

of WP4, and we are looking forward to exploring the exploitation potential of applications that we                

can build on top of this work (more on this in D7.3v3, the final deliverable on exploitation). 
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9.2 List of abbreviations 

Use the following table format 

Abbreviation Description 

OMR Optical Music Recognition 

CE Contributor Environment 

API Application Programming Interface 

MIR Music Information Retrieval 

MEI Music Encoding Initiative 

GPU Graphics Processing Unit 
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Appendix A: Sample abridged MEI output of the OMR         

API 
 

<?xml version="1.0" encoding="utf-8"?> 

<mei xmlns="http://www.music-encoding.org/ns/mei"> 

  <meiHead> 

    <fileDesc> 

      <titleStmt/> 

      <pubStmt/> 

    </fileDesc> 

    <encodingDesc> 

      <appInfo> 

 <application isodate="2020-09-26T13:55:08" version="1.0.0"> 

          <name> 

            Peachnote OMR v20200618 

          </name> 

          <p/> 

        </application> 

      </appInfo> 

    </encodingDesc> 

  </meiHead> 

  <music> 

    <facsimile> 

      <surface lrx="2745" lry="3611" n="1" ulx="0" uly="0" 

xml:id="surface_e3405180-ffff-11ea-a0eb-ad585484e359"> 

        <graphic height="3611" width="2745" xml:id="graphic_e34051ee-ffff-11ea-a0eb-ad585484e359"/> 

        <zone lrx="1633.804443359375" lry="1055.9180908203125" score="1.0" type="measure" 

ulx="1346.595703125" uly="672.611572265625" xml:id="zone_e33c0864-ffff-11ea-a0eb-ad585484e359"/> 

        <zone lrx="1134.9295654296875" lry="1084.1168212890625" score="1.0" type="measure" 

ulx="781.8655395507812" uly="656.6336669921875" xml:id="zone_e33c0a4e-ffff-11ea-a0eb-ad585484e359"/> 

 ... 

<zone lrx="2034.7462158203125" lry="2194.050537109375" score="0.761" type="note-dur_8-stem.dir_down" 

ulx="1996.92431640625" uly="2105.322998046875" xml:id="zone_e33da868-ffff-11ea-a0eb-ad585484e359"/> 

 <zone lrx="579.3828125" lry="3209.49169921875" score="0.757" type="notehead" 

ulx="542.9995727539062" uly="3180.149658203125" xml:id="zone_e33dacd2-ffff-11ea-a0eb-ad585484e359"/> 

        ... 

      </surface> 

    </facsimile> 

    <body> 

      <mdiv label="" n="1" xml:id="mdiv_e34bd000-ffff-11ea-a0eb-ad585484e359"> 

 <score> 

          <scoreDef/> 

          <section> 

            <measure facs="#zone_e33c0fda-ffff-11ea-a0eb-ad585484e359" label="1" n="1" 

xml:id="measure_e33c0f30-ffff-11ea-a0eb-ad585484e359"> 

              <staff facs="#zone_e33d4d32-ffff-11ea-a0eb-ad585484e359" 

xml:id="staff_e33d4c7e-ffff-11ea-a0eb-ad585484e359"> 

 <clef facs="#zone_e33cc59c-ffff-11ea-a0eb-ad585484e359" 

xml:id="clef_e33cc4e8-ffff-11ea-a0eb-ad585484e359"/> 

 <keySig facs="#zone_e33e5a4c-ffff-11ea-a0eb-ad585484e359" 

xml:id="keySig_e33e59ca-ffff-11ea-a0eb-ad585484e359"/> 

 <meterSig facs="#zone_e33ebdac-ffff-11ea-a0eb-ad585484e359" 

xml:id="meterSig_e33ebd2a-ffff-11ea-a0eb-ad585484e359"/> 

 <clef facs="#zone_e3404758-ffff-11ea-a0eb-ad585484e359" 

xml:id="clef-shape_F_e34046fe-ffff-11ea-a0eb-ad585484e359"/> 

 <note facs="#zone_e33f18e2-ffff-11ea-a0eb-ad585484e359" 
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xml:id="note-dur_4-stem.dir_down_e33f1860-ffff-11ea-a0eb-ad585484e359"/> 

 <note facs="#zone_e3402764-ffff-11ea-a0eb-ad585484e359" 

xml:id="note-dur_4-stem.dir_down_e3402714-ffff-11ea-a0eb-ad585484e359"/> 

 <artic facs="#zone_e33e90f2-ffff-11ea-a0eb-ad585484e359" 

xml:id="artic-artic_stacc_e33e907a-ffff-11ea-a0eb-ad585484e359"/> 

                 <note facs="#zone_e33ff06e-ffff-11ea-a0eb-ad585484e359" 

xml:id="note-dur_16-stem.dir_down_e33ff01e-ffff-11ea-a0eb-ad585484e359"/> 

               </staff> 

               <staff facs="#zone_e33ebca8-ffff-11ea-a0eb-ad585484e359" 

xml:id="staff_e33ebc30-ffff-11ea-a0eb-ad585484e359"> 

 <clef facs="#zone_e33e5d26-ffff-11ea-a0eb-ad585484e359" 

xml:id="clef_e33e5cae-ffff-11ea-a0eb-ad585484e359"/> 

 <keySig facs="#zone_e33de468-ffff-11ea-a0eb-ad585484e359" 

xml:id="keySig_e33de3b4-ffff-11ea-a0eb-ad585484e359"/> 

                  ... 

                </staff> 

              </measure> 

              <measure facs="#zone_e33c0a4e-ffff-11ea-a0eb-ad585484e359" label="2" n="2" 

xml:id="measure_e33c097c-ffff-11ea-a0eb-ad585484e359"> 

 <staff facs="#zone_e33c1f66-ffff-11ea-a0eb-ad585484e359" 

xml:id="staff_e33c1e3a-ffff-11ea-a0eb-ad585484e359"> 

                  <accid facs="#zone_e34001ee-ffff-11ea-a0eb-ad585484e359" 

xml:id="accid_e3400194-ffff-11ea-a0eb-ad585484e359"/> 

                  ... 

 </staff> 

              </measure> 

            <sb/> 

          </section> 

 </score> 

      </mdiv> 

    </body> 

  </music> 

</mei> 
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Appendix B: Example image annotation 
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