

TROMPA: Towards Richer Online Music Public-domain Archives

Deliverable 5.1 v2

Data Infrastructure

D5.1-1 - Data Infrastructure - v2.0 1

Grant Agreement nr 770376

Project runtime May 2018 - April 2021

Document Reference D5.1-2 - Data Infrastructure

Work Package WP5 - TROMPA Contributor Environment

Deliverable Type Report

Dissemination Level PU

Document due date 01-11-2020

Date of submission 31-10-2020

Leader VD

Contact Person David Linssen (david@videodock.com)

Authors Bauke Freiburg (VD), David Linssen (VD) Christiaan Scheermeijer
(VD), David Weigl (MDW), Aggelos Gkiokas (UPF), Alastair Porter
(UPF)

Reviewers Cynthia Liem(TUD)

Ref. Ares(2020)7127783 - 26/11/2020

Executive Summary

❖ The Trompa Data Infrastructure allows for interconnection between the different TROMPA

software components, the Pilot Applications created out of these components and a number

of linked data repositories. Communication between services can be carried out through

HTTP requests (the CE API has GraphQL and REST interfaces) or through integration of one of

the generic CE frontend components in a user facing application.

❖ It consists of three major components:

➢ TROMPA’s Contributor Environment, which provides the storage, interlinking and

retrieval of musical data through a Neo4j property graph database exposed for

query via a GraphQL endpoint. The graph database’s data model employs

widespread, established Semantic Web vocabularies in order to promote

interoperability and reusability of its data.

➢ TROMPA CE Processing Library, which provides unified mechanisms for the

application of specific algorithms on CE referenced data. It acts as a conceptual

organisation of software algorithms that integrate with the CE through an HTTP

interface, orchestrating automated processing of information resources referenced

by the CE’s knowledge graph. It is currently comprised of a number of component

APIs for multimodal query, display, and annotation of music resources, and

automated assessment of scores and performances.

➢ Personal online datastores (SOLID pods) that provide a mechanism for the storage of

personal data. These enable users to retain control and ownership of their

contributions, and act as user-identity providers for authentication with TROMPA

applications. Contributions generated by a user’s interactions with such applications

are stored in the user’s Pod as Linked Data, referenced by a URI which can be

requested through an HTTP interface. An access control layer allows the user to

selectively share or retain private access to each generated data item, or to open it

to the public.

❖ The infrastructure is fully functional and has been implemented in multiple TROMPA WP6

End User Pilot applications.

❖ The most current version of the CE API specification can be found online in the form of API

documentation Any future iterations of the API will be updated here during the lifetime of 1

the TROMPA project.

❖ This deliverable is complementary to the following deliverables

➢ D2.3.1 Technical Requirements describes the conventions, internal data model, 2

data integration requirements, ontology, interfaces, integration of algorithm process

application and integration of generic front-end components in extensive detail and

functions as the reference manual for the contributor Environment. It has been

made public together with the publication of this document, and D2.6, which

describe the technologies developed for service integration (the Audio Commons

1 ​http://api.trompamusic.eu/
2 ​https://trompamusic.eu/deliverables/TR-D2.3.1-Technical_requirements_v1.1.pdf

D5.1-1 - Data Infrastructure - v2.0 2

http://api.trompamusic.eu/
https://trompamusic.eu/deliverables/TR-D2.3.1-Technical_requirements_v1.1.pdf

Mediator) and present draft guidelines for adding new services to the Audio

Commons Ecosystem (respectively).

❖ Future roadmap of the data infrastructure is documented as part of the GitHub ce-api

repository which will be kept up to date during the lifetime of the project. 3

3 ​https://github.com/trompamusic/ce-api/projects

D5.1-1 - Data Infrastructure - v2.0 3

https://github.com/trompamusic/ce-api/projects

D5.1-1 - Data Infrastructure - v2.0 4

Version Log

Date Description

v0.1 28 October 2020 Initial version submitted for internal review

v0.2 30 October 2020 Revised version after internal review

v1.0 31 October 2020 Final version submitted to EU

Table of Contents

Table of Contents 5

1. Introduction 6

2. Requirements 7

3. Overview 7

3.1. Contributor Environment Architecture 7

3.2. TROMPA Processing library 9

3.3. Handling personal data within TROMPA 9

4. Functionalities 10

4.1. API Queries and GraphQL interface 11

4.1.1 Queries 11

4.1.2 Mutations 11

4.1.3 Subscriptions 11

4.2. Components, integration of WP 3&4 and additional tooling 12

4.2.1 Components and integration of the WP 3 & 4 outcomes 12

4.2.2 Additional tooling 13

4.2.2.1 CE-Client library 13

4.2.2.2 CE Data Import library 13

4.3. Authentication and Privacy 13

4.3.1. Authentication in the CE 13

4.3.2 Obtaining access 13

4.3.3. Personal Data Storage 13

5. Hardware Infrastructure 14

5.1 Contributor Environment 14

6. Future changes 14

6.1 Roadmap 14

References 15

D5.1-1 - Data Infrastructure - v2.0 5

1. Introduction
This document describes the released version of the Trompa Data Infrastructure (as planned and

described in the first version of this document). The Trompa Data Infrastructure allows for

interconnection between the different TROMPA software components, the Pilot Applications

created out of these components and a number of linked data repositories. It consists of an API

application that exposes functionalities to update and query a graph database (Neo4j) that contains

a dataset complying with the ​CE internal data model​, which is based on the ​schema.org structured

data vocabulary. Communication between services can be carried out through HTTP requests (the CE

API has GraphQL and REST interfaces) or through integration of one of the generic CE frontend

components in a user facing application. The TROMPA Data Infrastructure consists of three major

components:

1. TROMPA’s Contributor Environment, provides the storage, interlinking and retrieval of

musical data.

2. TROMPA CE Processing Library, provides unified mechanisms for the application of specific

algorithms on CE referenced data

3. Personal online datastores (SOLID pods) that provide a mechanism for the storage of

personal data. These enable users to retain control and ownership of their contributions,

and act as user-identity providers for authentication with TROMPA applications

Figure 1.1​. TROMPA Data Infrastructure

D5.1-1 - Data Infrastructure - v2.0 6

https://docs.google.com/document/d/1Y_xVLtC295PdnK3zI0mWnuhM3hUGbl3zLgAHcnVIQXE/edit#bookmark=id.a2dmjexoh764
https://schema.org/

The Trompa Data Infrastructure, envisioned in the previous version of this document, has been

delivered since March 19, 2020. The infrastructure is functional and has already been implemented

in multiple TROMPA WP6 End User Pilot applications.

This document provides an overview of the CE architecture, the CE Processing Library,

authentication and storing of personal data within TROMPA and provides an outlook on the

expected evolution of the infrastructure.

2. Requirements
This deliverable is complementary to deliverable ​D2.3.1 Technical Requirements which describes in 4

detail the:

❖ Conventions,

❖ CE internal data model,

❖ Data integration requirements,

❖ Ontology,

❖ Interfaces

➢ GraphQL interface for managing data,

➢ REST interface to provide a unique URL for each node in the CE database and to

provide JSON-LD output.

❖ Integration of algorithm process application,

❖ Integration of generic front-end components.

The D2.3.1 document functions as the reference manual for the Contributor Environment. It has

been updated in parallel and will be made ​publicly available, in concordance with the release of this

deliverable.

3. Overview

3.1. Contributor Environment Architecture

A primary motivation of the TROMPA project lies in the interconnection—rather than the integration

and ingestion—of information in public-domain music repositories. It would be costly and

counterproductive to attempt to supplant established repositories by copying entity descriptions

and media representations into a centralized database under a unified data schema. Rather, we

describe the contents of such repositories by reference, using URIs to address, interlink, and

contribute layers of enriched descriptors and content to resources hosted in situ at their native

(TROMPA-external) Web locations.

4 ​https://trompamusic.eu/deliverables/TR-D2.3.1-Technical_requirements_v1.1.pdf

D5.1-1 - Data Infrastructure - v2.0 7

https://trompamusic.eu/deliverables/TR-D2.3.1-Technical_requirements_v1.1.pdf

Figure 3.1​. TROMPA’s Contributor Environment houses a Neo4j graph database describing music

resources hosted in external repositories. The HTTP wrapper assigns a URI to each node, exposing it

as Linked Data (JSON-LD) when the URI is dereferenced. Dashed arrows: interaction; solid arrows:

URI reference; dotted arrows: Linked Data-to-Neo4j translation provided by the HTTP wrapper.

Graph databases are ideally suited to support flexible, mutably specified interconnection of

Web-based resources. TROMPA has opted to adopt a Neo4j property graph database for this

purpose. This database, exposed for query via a GraphQL endpoint, forms the core of the TROMPA

Contributor Environment (CE), a data infrastructure that also comprises a number of component

APIs for multimodal query, display, and annotation of music resources, and automated assessment

of scores and performances (Figure 1). Each node in the graph can be accessed via a persistent URI

through an HTTP wrapper interface, providing a JSON-LD representation of the identified entity and

its associated properties and values by reference to their persistent URIs, interweaving the CE graph

with the wider Web of Linked Open Data.

The graph database’s data model employs widespread, established Semantic Web vocabularies in

order to promote interoperability and reusability of its data. Schema.org forms the core of this

model, and is used as the primary means of describing Web resources (including those

corresponding to persons, works, audiovisual recordings, and score encodings) and automated

processes (as described in the next section). This vocabulary is complemented by the use of Dublin

Core terms for bibliographic description; the Simple Knowledge Organization System (SKOS; Miles &

Bechhofer, 2009) data model to describe interrelations between Web resources; the Web

Annotation data model (Sanderson, Ciccarese, & Young, 2017) to annotate collection objects; and

the PROV ontology to capture provenance traces relating to their creation and processing. Further

pre-established vocabularies are used for data relating to domain-specialised tasks within the

federated contribution layer (Section 3.3), including the Music, Timeline, and Segment ontologies

(Raimond, Abdallah, S. Sandler, & Giasson, 2007; Fields, Page, De Roure, & Crawford, 2011) to

D5.1-1 - Data Infrastructure - v2.0 8

describe score-aligned performances for analysis or review in the music scholars (D6.3) and

instrumental players (D6.5) use-cases.

3.2. TROMPA Processing library

Alongside the interconnection of publicly-licensed music information obtained from established Web

repositories, TROMPA focuses on the enrichment of such information, through the application of

Music Information Retrieval (MIR) technologies, and through the contributions of human music

scholars, performers, and enthusiasts. Automated enrichment activities are centrally coordinated

using the CE alongside the TROMPA Processing Library (TPL; D5.3).

Figure 3.2​. TROMPA Processing Library (TPL) workflow. (1.) Researcher specifies her algorithm for

use with TPL. (2.) TPL continuously monitors the CE’s graph. When a new node is ingested with a

type matching a TPL algorithm’s specification, the algorithm is triggered on the newly entered data

(3.), before publishing the results to the CE (4.) , where they become available for query and may

potentially trigger further processing orchestrated by the TPL.

The TPL acts as a conceptual organisation of software algorithms that integrate with the CE through

an HTTP interface, orchestrating automated processing of information resources referenced by the

CE’s knowledge graph. A subscription mechanism (Figure 2) provides triggers for processing of newly

created graph nodes fulfilling certain type constraints as they are added to the CE. References to

processing outcomes—generally, MIR feature data—are themselves ingested into the knowledge

graph, where they may trigger further activities orchestrated by the TPL, resulting in processing

chains. These mechanisms allow researchers to modularly specify new algorithms or new software

versions as they become available, and to run them on demand in response to the arrival of specific

types of data.

3.3. Handling personal data within TROMPA

Where data is generated by automated processing of public-domain information, this data is

published openly under public license by the TROMPA consortium. The situation is more

complicated in the case of user contributions. Humans reporting on their subjective experiences, or

D5.1-1 - Data Infrastructure - v2.0 9

providing expert insights or artistic contributions, are understandably concerned about safeguarding

their data, and indeed their rights to such safeguards are guaranteed by the EU GDPR and similar

legislation.

Figure 3.3​. TROMPA’s federated contribution model allows users to retain data ownership and

access control, and to explicitly publish contributions to TROMPA under an open license.

To accommodate, TROMPA’s data infrastructure employs a secondary, decentralized layer of

personal online datastores (Solid Pods) that both enable users to retain control and ownership of

their contributions, and act as user-identity providers for authentication with TROMPA applications

(Mansour et al., 2016). Contributions generated by a user’s interactions with such applications are

stored in the user’s Pod as Linked Data, referenced by a URI which can be requested through an

HTTP interface. An access control layer allows the user to selectively share or retain private access to

each generated data item, or to open it to the public. Users may additionally choose to publish their

contributions with TROMPA under an open license (Weigl et al., 2020), at which point the relevant

data is ingested into the CE’s graph, making it discoverable by other TROMPA users. Through this

mechanism, users are offered fine-grained access control over the information resources they

generate through interaction with TROMPA applications, and retain ownership through the explicit,

user-directed act of publication into the public domain.

4. Functionalities
This section provides a conceptual overview of the TROMPA data infrastructure. All functionalities

are described in detail in D2.3.1 Technical Requirements including code examples.

D5.1-1 - Data Infrastructure - v2.0 10

The most up-to-date version of the API specification can be found online in the form of API

documentation which specifies the HTTP interface for building queries, performing mutations and 5

setting up subscriptions for CE referenced data. It also provides information regarding

authentication procedures.

4.1. API Queries and GraphQL interface

Three types of functionalities are accessible through the GraphQL API interface: Queries, Mutations

and Subscriptions.

4.1.1 Queries

A query starts with the phrase ‘query’ and typically consists of:

❖ The name of the query (optional),

❖ Type of entity for which is queried,

❖ Conditions (optional),

❖ List of properties to be included in the response.

The result typically consists of a JSON object containing:

❖ The “data” object with the result(s),

❖ The name of the query responded to,

❖ The actual data, corresponding to the list of properties to be included.

4.1.2 Mutations

Mutations are queries that add, update or remove data in the database. The following mutations

are possible:

❖ Creating, updating or deleting a node,

❖ Adding a relation between nodes (primitive types),

❖ Add a relation between nodes (Interfaced or Unioned types),

❖ Remove a relation between nodes.

4.1.3 Subscriptions

Subscriptions are available to listen to specific events. These events are triggered by adding

nodes in the CE. The following subscriptions are available:

❖ ControlActionRequest,

❖ ControlActionMutation,

❖ ThingCreateMutation,

❖ MediaObjectCreateMutation,

❖ VideoObjectCreateMutation,

5 ​http://api.trompamusic.eu/

D5.1-1 - Data Infrastructure - v2.0 11

http://api.trompamusic.eu/

❖ AudioObjectCreateMutation.

The ThingCreateMutation subscription is an abstract subscription which can be used to listen to

one or multiple create mutations with a single subscription.

4.2. Components, integration of WP 3&4 and additional tooling

4.2.1 Components and integration of the WP 3 & 4 outcomes

The TROMPA data infrastructure allows for mid-level integration of components that will be further

exploited in the WP6 pilots. In order to do so, the data produced in WP3 (musical repertoire,

automatic descriptions and generated audio) and annotations delivered through WP4 have been

made accessible and usable in reusable components, meeting common standards.

Component developers can query the CE database for ​EntryPoints ​that could potentially be

interesting for its users. By implementing a user interface on the basis of the information in the

(dynamic) template nodes ​Property ​and ​PropertyValueSpecification​, the algorithm process (WP3/4)

becomes available for a user.

After a user request is sent to the CE API, the Component is able set up a subscription to the

instantiated ​ControlAction via websocket to any mutations to the created job. The CE would notify

the Component of any updates done on the job, most likely by the algorithm process application. It

is up to the algorithm process application to determine how fine-grained these updates are.

The Component can show these updates in its UI and act on process completion by making the

results available to the user.

With the available result known, the Pilot is able to create additional relations from this result to

other relevant nodes in the CE database, like ​isBasedOn to a ​MusicComposition or ​copyrightHolder

to an ​Organisation​. ​This will greatly improve the chances that subsequent users find and re-use the

result file.

An implemented example of this mechanism can be found in the interaction between the

Campaign Manager and the D4.1 Task Engine, both currently part of the WP6 Orchestra use case. In

this example the Campaign Manager (CM), handling most user facing communication, uses the Data

Infrastructure to communicate with the Task Engine to serve the proper tasks for crowd verification

or annotation. The CM creates a ​ControlAction for each campaign. This ​ControlAction has a

reference to the ​EntryPoint of potential tasks that need to be performed in order to complete the

campaign. However, the Campaign Manager isn’t aware of the content of the task nor when it is

considered to be completed. Therefore the Campaign Manager uses a ​ControlActionMutation

subscription to be able to determine the tasks status and present the user a “Thank you” message

before navigating to the next task.

An up-to-date overview of all the available components will be published in month 34 of the

project. The components in progress are available through the TROMPA GitHub repository . 6

6 ​https://github.com/trompamusic

D5.1-1 - Data Infrastructure - v2.0 12

https://github.com/trompamusic

4.2.2 Additional tooling

4.2.2.1 CE-Client library

A CE Client is available as a Python library to read data from and write to the Contributor

Environment. The library connects to an existing TROMPA CE Instance. For testing on a local

environment the Docker containers can be run. 7

Basic code examples and installation instructions for the library can be found on its GitHub page:

https://github.com/trompamusic/trompa-ce-client

4.2.2.2 CE Data Import library

A data importing client is available as a Python library to import metadata to the Trompa Contributor

Environment. Currently it supports importing metadata from MusicBrainz. Installation instructions

for the library can be found on its GitHub page . 8

4.3. Authentication and Privacy

4.3.1. Authentication in the CE

All read operations in the Contributor Environment API are publicly accessible. However, in order to

create, update, or delete nodes, the request ​MUST BE authenticated with a JWT token. Full

authentication documentation is available here . The following JWT Endpoints are available: 9

❖ For test environment use 10

❖ For production environment use : 11

4.3.2 Obtaining access

The ​id and ​apiKey can be requested from one of the TROMPA project partners. Alternatively, users

can send an email to: info@videodock.com

4.3.3. Personal Data Storage

Solid (Mansour et al., 2016) forms the basis of TROMPA’s federated contribution layer (Section 3.3; 12

see also Weigl et al., 2020). Solid is a Web decentralisation project building on a W3C

standards-based Linked Data technology stack which aims to enable rich online interactions between

users that retain data ownership with each individual user. This allows each user to retain

fine-grained access control over their personal data, supporting sharing of data with specified users,

and simple integration by reference with the CE. This emphasis on user choice and control of

web-hosted data provide a pleasing fit to TROMPA’s emphasis on FAIR and open data principles.

Solid provides users with Personal Online Datastores (Solid Pods), which act as WebID identity

7 ​https://github.com/trompamusic/ce-api
8 ​h​ttps://github.com/trompamusic/ce-data-impor​t
9 ​https://github.com/trompamusic/ce-api/blob/staging/docs/authentication.md
10 ​https://api-test.trompamusic.eu/jwt
11 ​https://api.trompamusic.eu/jwt
12 ​http://solidproject.org

D5.1-1 - Data Infrastructure - v2.0 13

https://github.com/trompamusic/trompa-ce-client
https://github.com/trompamusic/ce-api
https://github.com/trompamusic/ce-data-import
https://github.com/trompamusic/ce-data-import
https://github.com/trompamusic/ce-data-import
https://github.com/trompamusic/ce-api/blob/staging/docs/authentication.md
https://api-test.trompamusic.eu/jwt
https://api.trompamusic.eu/jwt
http://solidproject.org/

providers as well as user-controlled storage spaces. This allows users to log in to TROMPA Web

applications (alongside any other Solid-compatible applications) with their own WebID, as well as to

privately share data with other users by reference to their WebIDs.

TROMPA’s Pod provider (Solid server) is available online . Due to the decentralised nature of 13

Solid, users are free to choose this or any other Pod provider on the Web for interaction with

TROMPA applications. Users with advanced technical expertise may additionally choose to self-host.

An exception has been made for the Choir WP6 use case, where users are currently using their

Voctro Labs-supplied ‘Voiceful’ accounts to access the Choir prototype. For this use case, users can

choose to share their voice recording data (for research purposes). This data will be stored in an

Amazon AWS S3 bucket (maintained by Voctro Labs) and linked to the CE.

5. Hardware Infrastructure

5.1 Contributor Environment

The delivered TROMPA Data Infrastructure runs on AWS infrastructure. Both the CE API test and

production environments are hosted in a AWS Fargate service using a Docker container. 14

6. Future changes

6.1 Roadmap

With the delivery of the TROMPA Data Infrastructure and this document describing it, there are no

further major changes envisioned within the scope of the TROMPA project. However, any future

changes of the Data Infrastructure to satisfy pilot requirements (which are still in development) will

be deposited on the GitHub page. 15

13 ​https://trompa-solid.upf.edu
14 ​https://docs.aws.amazon.com/eks/latest/userguide/fargate.html
15 ​https://github.com/trompamusic/ce-api

D5.1-1 - Data Infrastructure - v2.0 14

https://trompa-solid.upf.edu/
https://docs.aws.amazon.com/eks/latest/userguide/fargate.html
https://github.com/trompamusic/ce-api

References
Fields, B., Page, K., De Roure, D., & Crawford, T. (2011). The segment ontology: Bridging

music-generic and domain-specific. In ​2011 IEEE International Conference on Multimedia and Expo

(pp. 1-6). IEEE. ​https://doi.org/10.1109/ICME.2011.6012204

Mansour, E., Sambra, A. V., Hawke, S., Zereba, M., Capadisli, S., Ghanem, A., ... & Berners-Lee, T.

(2016). A demonstration of the solid platform for social web applications. In ​Proceedings of the 25th

International Conference Companion on World Wide Web (pp. 223-226).

https://doi.org/10.1145/2872518.2890529

Miles, A. & Bechhofer, S. (2009). SKOS Simple Knowledge Organization System Reference. ​W3C

Recommendation. ​https://www.w3.org/TR/skos-reference/

Pugin, L., Zitellini, R., & Roland, P. (2014). Verovio: A library for Engraving MEI Music Notation into

SVG. In ​Proceedings of the 15th International Society for Music Information Retrieval Conference (pp.

107-112). ​https://archives.ismir.net/ismir2014/paper/000221.pdf

Raimond, Y., Abdallah, S. A., Sandler, M. B., & Giasson, F. (2007). The Music Ontology. In ​Proceedings

of the 8th International Conference on Music Information Retrieval​.

https://archives.ismir.net/ismir2007/paper/000417.pdf

Sanderson, R., Ciccarese, C., & Young, B. (2017). Web Annotation Data Model. ​W3C

Recommendation​. ​https://www.w3.org/TR/annotation-model/

Weigl, D. M. & Page, K. R. (2017). A framework for distributed semantic annotation of musical score:

“Take it to the bridge!”. In ​Proceedings of the 18th International Society for Music Information

Retrieval Conference​. ​http://archives.ismir.net/ismir2017/paper/000190.pdf

Weigl, D. M., Goebl, W., Hofmann, A., Crawford, T., Zubani, F., Liem, C. C. S., & Porter, A. (2020).

Read/write digital libraries for musicology. In ​Proceedings of the 7th International Conference on

Digital Libraries for Musicology. ​https://doi.org/10.1145/3424911.3425519

D5.1-1 - Data Infrastructure - v2.0 15

https://doi.org/10.1109/ICME.2011.6012204
https://doi.org/10.1145/2872518.2890529
https://www.w3.org/TR/skos-reference/
https://archives.ismir.net/ismir2014/paper/000221.pdf
https://archives.ismir.net/ismir2007/paper/000417.pdf
https://www.w3.org/TR/annotation-model/
http://archives.ismir.net/ismir2017/paper/000190.pdf
https://doi.org/10.1145/3424911.3425519

