

TROMPA: Towards Richer Online Music Public-domain Archives

Deliverable 5.3

TROMPA Processing Library
Grant Agreement nr 770376

Project runtime May 2018 - April 2021

Document Reference TR-D5.3-TROMPA Processing Library_v1

Work Package WP5 - Contributor Environment

Deliverable Type Report

Dissemination Level PU- Public

Document due date 30 April 2019

Date of submission 30 April 2019

Leader UPF

Contact Person Aggelos Gkiokas (aggelos.gkiokas@upf.edu)

Authors Aggelos Gkiokas (UPF), Wim Klerkx (VD), Álvaro Sarasúa (VL), David
Weigl (MDW), Ingmar Vroomen (CDR), Tim Crawford (GOLD)

Reviewers Álvaro Sarasúa (VL), Emilia Gomez (UPF)

TR-D5.3-TROMPA Processing Library_v1

1

Executive Summary

Trompa Processing Library (TPL) responsibility is to offer a communication layer between Use Cases,

CEapi and WP3 technologies. Each time a use case requests any type of data and metadata, this is

done via TPL functionalities which derive from:

❖ The Multimodal Component which allows a Pilot user to browse (and combine) Contributor

Environment (CE) references to public music data, regardless of content type. Moreover the

Multimodal Component provides a graphical interface to browse the CE data.

❖ The GraphQL Interface which provides Pilot developers rich access to the TROMPA dataset,

stored as public data references in the CE database.

❖ Extended API Functionalities which allows the (real-time) definition, creation, completion

and consumption of WP3 technology ‘jobs’ on public music data referenced in the CE

database.

The processing workflow for triggering a WP3 algorithm/task is as follows:

❖ A WP3 algorithm defines a task (algorithm) template in the CE database.

❖ The use case can retrieve the potential tasks from CE and can search a certain descriptor for

a specific piece of data.

❖ If the descriptor of data does not exist, the use case requests the running of a task.

❖ On reception of this request, the Extended API Functionalities component creates a node

for the specific task in the CE.

❖ The WP3 process regularly polls the CEapi for new tasks to the CEapi to get notifications on

when a new task is requested.

❖ On reception of a new task, the WP3 tool retrieves the necessary parameters, validates and

starts the task, then updates the task status in the CEapi.

❖ The tool updates the task status regularly to reflect progress.

❖ Once the WP3 tool is run and processed the requested task, it stores the output in an

external repository, then creates a reference node for the storage location in the CEapi and

updates the task status to complete.

❖ Either by polling or by subscription, the use case receives the ‘complete’ update.

❖ Use case retrieves the result reference and can create additional relations between result

and pre-existing nodes for enriching, semantic interlinking and provenance tracking

purposes.

The CEapi’s main client interface is an implementation of GraphQL. The internal data model of the CE

is based on base level types of the schema.org model and a number of schema.org extensions that

fit the needs of the TROMPA project. GraphQL broadly supports three types of functionalities that

are accessible through the GraphQL API interface:

❖ Queries: Queries allow to search data (nodes) in the GraphQL database. The queries are

used to search and retrieve data nodes in a “read-only” mode.

❖ Mutations: Contrary to queries, mutations are queries to add, remove or update data in the

database.

TR-D5.3-TROMPA Processing Library_v1

2

❖ Subscriptions: Allow clients to subscribe to changes in the dataset, for example after a

particular node was updated or a particular type of node was created. Once such a change

event occurs, the client will be notified in real time.

The CE database will contain references to public online musical data in many different formats. The

Multimodal Component assists Pilot developers to retrieve that assorted data and present it to

users in a comprehensive way. To this end, the Multimodal Component offers ‘shortcut’ access to

CEapi GraphQL functionalities plus example User Interface (UI) components that give users access to

these functionalities and enable them to consume the rich TROMPA data set. The Multimodal

Component offers a GUI to search the TROMPA data set as contained in the CE database, applying

the mockups as researched and produced in Task 5.3 - Multimodal Integration of Music Data.

Currently, the only shortcut functionality that was worked out in the Multimodal Component is a

search component that is able to disclose all the public musical data references stored in the CE

database.

TROMPA Processing Library also provides a mechanism by which the technologies of WP3 can be

invoked by the user pilots (WP6) through the Contributor Environment and the GraphQL API. At its

most basic, this integration mechanism offers automation for the following process:

● User Pilot chooses target content, referenced in CE database

● User Pilot user creates a job to run a process on this content

● WP3 Process picks up job

● WP3 Process executes job on target content, creating and storing a result

● WP3 Process writes reference to result in CE database

● User Pilot picks up result

● User Pilot user consumes result

Process jobs are maintained as GraphQL nodes in the database. The generic Component-CE-WP3

interaction solution is based on a schema.org compatible data model that can be broken down into

three parts:

● Template Nodes: They are maintained by WP3 developers and used by User Pilots. The

Template Nodes represent generic algorithmic processes, e.g. “the extraction of Pitch Class

Profiles (PCP) features of an audio piece”.

● Instance Nodes: They are created by User Pilots and maintained by CE. Instance Nodes

correspond to specific tasks requested by User Pilots, e.g. “the extraction of PCP features of

the audio piece X”.

● Public Nodes: - They represent the (public) content on which the WP3 process is run (the

audio piece X) and the corresponding results (the PCP features).

Each algorithm must “subscribe” it self to the Contributor Environment. The procedure to do so is

summarized as:

❖ Create a SoftwareApplication node in the CE: This node does not correspond to the specific

algorithm, but rather to the software/library that hosts the specific algorithm.

❖ Create an EntryPoint node in the CE: The entry point corresponds to a specific

algorithm/method to be run.

❖ Create an actionApplication relation between SoftwareApplication and EntryPoint: This

actions defines that this EntryPoint is a part of the SoftwareApplication node.
❖ Create a ControlAction template node: This ControlAction node will be the model for the

‘job’ created for a specific algorithm process requests. Each request will result in a copy of

TR-D5.3-TROMPA Processing Library_v1

3

this ControlAction node to be created (instantiated) which will then represent the ‘job’ that

can be acted on and followed.

❖ Create potentialAction relation between EntryPoint and (template) ControlAction: Relates

the ControlAction template to the specific EntryPoint.
❖ Create Property template node: Corresponds to existing nodes in the CE database, probably

referencing a content file at some public repository. These will be the inputs to the WP3

algorithms.

❖ Create PropertyValueSpecification: Corresponds to a scalar parameter (string, number,

on/off checkbox) that needs to be given by the user as ‘settings’ inputs, in order to tune the

algorithm process.

❖ Create object relation between ControlAction and Property/PropertyValueSpecification

template nodes respectively.

Each algorithm is invoked by the user pilots, using the RequestControlAction.

❖ The user pilot makes a RequestControlAction for a specific EntryPoint. The CEapi translates

this request by creating a set of nodes on the basis of the EntryPoint/ControlAction

template and subsequently responds with the thus created ControlAction, including its

unique identifier. With this identifier, the user pilot can then subscribe to the CEapi and and

receive a notification each time thus created ControlAction is updated.

❖ From the WP3 program/algorithm perspective, there are two ways to get notified that a new

task has to be run:

➢ Subscribe to the CEapi on RequestControlAction requests on a specific EntryPoint,

through the websocket: This functionality offers the possibility to handle user

requests for algorithms in real-time.

➢ Frequently check for tasks in the CE: It is possible to query for ControlActions

created on the basis of a certain EntryPoint. In this way, the software developed

under WP3 can check if new tasks have to be run at convenient times or intervals.

This functionality offers WP3 software to handle user requests for algorithms in

batches.

Since the algorithm has been invoked, it can update the status of ControlAction item created during

its process until the process is completed:

❖ Once the algorithm receives the job, it can update the status of the ControlAction node to

‘received’.

❖ While the algorithm is running, it can update the status of the ControlAction node in order to

provide more information (e.g. ‘running’) .

❖ Once the process has completed, the algorithm process application should write the result

to a public location and add a reference to this result in the CE database:

❖ With the identifier obtained from the response of the result node (e.g. DigitalDocument)

creation, create a result relation between ControlAction and DigitalDocument:
❖ When the algorithm process application now updates the ControlAction actionStatus to

‘complete’, the process request response cycle is completed.

The process described above provides a flexible framework for communicating WP3 tasks/jobs with

the CE data, and the user pilots. In the perspective of WP3 technologies, for running a specific task,

two different types of components are involved:

TR-D5.3-TROMPA Processing Library_v1

4

❖ Wrapping software: This software is responsible for handling the communication and the

requests from/to the GraphQL interface of the CE, and trigger the specific Task software

needed to run.

❖ Task software: The software that run the actual computations of the task.

In general, these software might be hosted in different servers. This procedure is global (generic) and

can be applied to all of the technologies under WP3. In the main body of the deliverable, we will

provide more details on the WP3 technologies side, e.g. where these technologies will be hosted and

run, and where the results will be saved. In principle, the intention is to run all the Wrapping

Software components in a dedicated server provided by UPF, which are responsible for handling the

communication with the GraphQL interface, the job requests, and trigger and invoking the

appropriate programs. However, where the actual computations will be run depends on the

developers of the individual tasks. In the rest of the executive summary, we provide some details on

the individual tasks and subtasks of WP3.

The technologies under Task 3.2 - Music Description (in correspondence with the Deliverable 3.2

- Music Description) involve tools for extracting low / medium level audio descriptors, which will be

extracted with the use of Essentia software. Regarding high level descriptors that correspond to

Rhythm Descriptors, Music Similarity, Emotion Tag Annotation (sub-sections 2.2.3, 2.2.5 and 2.2.6 of

Deliverable - 3.2 Music Description), Symbolic Descriptors (Section 2.3) and Video Descriptors

(Section 2.4) and we will follow the same approach with the one described in the previous

subsections, with the only difference that the algorithm software will not be Essentia, but inhouse

UPF methods or other open source state-of-the-art methods that will be deployed. Regarding singing

voice analysis, it will be deployed using different algorithms: Voiceful Cloud’s VoDesc, Essentia and

the TROMPA Choir Singing Analysis algorithm.

Regarding Task 3.3 - Audio Processing, The singing synthesis will be integrated using Voctro Labs’

Voiceful Cloud service. The motivation for using this platform is twofold: first, it is an existing

working solution for singing synthesis that already stores its results in S3 servers, publicly accessible

through URLs to which the CE can store references; second, it facilitates the immediate adaptation

of the developed technologies in other uses cases for exploitation that may arise beyond the project.

This Cloud API service will be extended for TROMPA and will consist of two main tasks:

❖ Deploying the new models in the cloud servers. As detailed in Deliverable 3.3 - Audio

Processing, choir singing synthesis has specific requirements beyond those of solo singing

synthesis. During the project, new synthesis models will be created from new recordings for

multiple languages. These new models will be made accessible through the cloud service.

❖ Adapting the API to support the choir case. Currently, the VoSynth API accepts monophonic

input scores in MusicXML format, as well as in other specific .txt and .json formats for

synthesis. For the choir use case, the API will be adapted in order to accept also MEI scores

and to support polyphonic material, i.e. receiving a score containing all the voices to be

synthesized and outputting one audio file per voice.

For Task 3.4 - Visual Analysis of Scores, a machine-readable representation of a musical score can be

generated in one of three basic ways: manual encoding, optical music recognition (OMR) or

conversion from an existing representation. For several purposes within TROMPA involving the

on-screen display of scores we shall be using OMR technology to extract complete or partial

machine-readable score representations in the MEI format from scores saved as PDF or other

graphical formats. We choose to work with open-source programs which can be modified or adapted

to the purposes of TROMPA, which can be run in batch-mode over large collections of music, and

TR-D5.3-TROMPA Processing Library_v1

5

which save their results in a form (such as MusicXML) which can be easily converted to MEI for use

within TROMPA. For standard modern musical notation we shall be using the open-source program

Audiveris. Audiveris is generally reliably accurate with good-quality scores in good condition and

well photographed/digitised. For the music-scholars’ use case within TROMPA, we shall also be

working with vocal music from the 16th century. We shall thus use the specialist software Aruspix.

Similar to other WP3 technologies, each of the software that will be used will be assigned to an

EntryPoint. The wrapper software (Figure 5.4) will be (possibly) hosted on the UPF server. Regarding

the computations components, the infrastructure that will be hosted is to be determined in the

future with respect to the computation demands, which depend on the use cases that involve OMR.

Task 3.5 - Alignment of Musical Resources concerns the interlinking of multimodal

representations of a musical expression at different levels of granularity. Various algorithms and

software packages to accomplish this task are described in Deliverable 3.5 - Multimodal Music

information Alignment. For present development, we are focussing our efforts on the MAPS tool

(“Matcher for Alignment of Performance and Score”) under ongoing in-house development at MDW,

which has the advantage of natively supporting MEI. MAPS will be called through a wrapper layer

(“MAPS wrapper”) responsible for accepting new jobs (e.g., performances) from TROMPA users,

registering these within the CE, and spawning MAPS instances to complete the jobs. MAPS instances

are processor intensive and should thus be deployed on a dedicated high-performance server -

potentially at UPF. The MAPS wrapper is a comparatively light-weight web service that could be

deployed separately, e.g. at MDW.

Task 3.6 - Multimodal Cross Linking comprises of two different pieces of software, the user

interface (Authority registration and linking) and the web scraper:

❖ Authority registration and linking: This software has a user interface to create and describe

web-resources and the relations between entities and resource types. For example Wikidata

will be registered as authority that provides Person Entities, Musical Work Entities and other

entities that will be stored in the CE.

❖ Web scraper: The web scraper will retrieve entity information from the in the CE stored

web-resource and finds links to other registered authorities. It will save the referenced

entities in the CE.

The user interface (Authority registration and linking) interacts with contributors and the CE. On the

other hand, the web scraper interacts between the CE and the web resources of registered

authorities. The multimodal cross linking will have use cases where the linked data can be used as

background reference or where data can be enriched for the end user. This is primarily with cases for

music scholars and music enthusiasts. Both pieces of software will run as micro services in a cloud

environment under subscription of Trompa. The authority registration and linking software will

register user input from a web-interface and store the data in the CE. The web scraper takes data

from web-resources of registered authorities and saves the linked data in the CE.

Rather than being a concrete piece of software, TROMPA Processing Library is a collection of

Contributor Environment functionalities that allow the interaction of WP3 components with the CE

data, the different software components that correspond to the various WP3 tasks, and the

organization amongst them. For the next period of the project, we plan to develop the TPL as

follows:

❖ Preliminary Development (M13 - 18): By the end of this period we will test all of the

individual components of WP3 and validate the correct communication with the CE:

assignment of tasks from the CE, execution of tasks, storage of data.

TR-D5.3-TROMPA Processing Library_v1

6

❖ First Working Version (M19-M22): By the end of this period we will provide a first full

version of the TPL. This will be delivered 2 months prior to M24 and MS3, where the first

version of the working prototypes of the pilots will be delivered in order to facilitate the

development of the pilots.

❖ Incorporation of Latest WP3 Components (M23-24): TPL will incorporate the final versions

of for Task 3.3 - Audio Processing and Task 3.5 - T3.5 Alignment of musical resources.

❖ Incorporation of Final WP3 Components (M25-M30): TPL will incorporate the final versions

of for Task 3.4 - Visual Analysis of Scanned Scores and Task 3.6 - Multimodal Cross Linking

❖ Final Version (M31-M34): Final adaptations/debugging. There will be an effort to have most

of the components centralised for ensuring sustainability after the end of the project.

TR-D5.3-TROMPA Processing Library_v1

7

Version Log

Date Description

v0.1 29 March 2019 Initial draft from UPF

v0.2 4 April 2019 Integrated initial contributions from VD

V0.3 8 April 2019 Added Section 5

v0.3.1 9 april 2019 Added Section 4

v0.4 26 April 2019 Completed Sections 4 & 5

v0.5 26 April 2019 Added Section 6

v0.6 27 April 2019 Minor corrections to the text/formatting

v0.7 29 April 2019 Added Executive Summary

v0.8 29 April 2019 References fixed

v1.0 30 April 2019 Final version submitted to EU

TR-D5.3-TROMPA Processing Library_v1

8

Table of Contents

Table of Contents 9

1. Introduction 11

2. The TROMPA Processing Library Overview 11

Figure 2.1 TROMPA Processing Library Workflow 12

3. GraphQL Interface 13

3.1 Overview 13

3.2 Queries 14

3.3 Mutations 15

3.4 Subscriptions 15

4. Multimodal Component 16

4.1 Overview 16

4.2 Communication with the Use Cases 16

4.3 A Graphical Interface for Accessing Data 16

4.4 Shortcut functionality to GraphQL 20

4.4.1 Basic metadata search 20

4.4.4 Advanced metadata search 21

5. Extended API Functionalities to support WP3-WP6 integration 23

5.1 Data Model for WP3 Processes 23

5.1.1 Overview 23

5.1.2 Template nodes 24

5.1.3 Instance nodes 25

5.1.4 Public nodes 26

5.2 Communication with the GraphQL Component 26

5.2.1 Algorithm Subscription 26

5.2.2 Algorithm Invoking 27

5.2.3 Algorithm Processing and Monitoring 27

5.3 Individual Tools 27

5.3.1 Overview 28

5.3.1 Music Description 29

5.3.1.1 Low / Medium Audio Descriptors 29

5.3.1.2 High Level Audio, Symbolic and Video Descriptors 30

5.3.1.3 Singing Voice Analysis 30

5.3.2 Audio Processing 31

5.3.3 Visual Analysis of Scores 32

5.3.4 Alignment of Music Resources 33

5.3.5 Multimodal Cross Linking 35

TR-D5.3-TROMPA Processing Library_v1

9

6. Conclusion 35

7. References 36

7.1 Written references 36

7.2 List of abbreviations 36

Annex A - Query the Contributor Environment 38

1. Queries 38

1.1 Simple query for one node 38

1.2 Simple query for multiple nodes 39

1.3 Complex query 39

2. Mutations 40

2.1 Creating a node 40

2.2 Updating a node 41

2.3 Deleting a node 41

2.4 Add a relation between nodes (primitive types) 42

2.5 Add a relation between nodes (Interfaced or Unioned types) 42

2.6 Remove a relation between nodes 43

Annex B - Verovio Converter Example 44

TR-D5.3-TROMPA Processing Library_v1

10

1. Introduction
This deliverable provides functionalities for embeddable descriptions and synthesis of music data

coming from supported music data repositories.

In the project proposal, Task 5.3 responsibilities are described as Multimodal Integration and as

Processing Library (D5.3). Together, these responsibilities comprise common access to (combinations

of) public music data contained in the Contributor Environment (CE) database regardless of

content-type and common access to WP3 algorithm processes to be run against (combinations of)

this public music data.

With the setup of the CE as described in D5.1 - Data Infrastructure , these functionalities are not 1

designed to be all encapsulated within a single software library, but they are to be delivered by the

integration of functionalities of both T5.1 and T5.3:

❖ GraphQL implementation features of the Contributor Environment API (CEapi).

❖ The Multimodal Component, offering ‘shortcut’ access to CEapi GraphQL functionalities, like

a search interface. The Multimodal Component also provides a graphical interface to browse

the CE data.

❖ An extension of CE-api functionalities, offering a generic integration solution for

WP3-CEApi-Pilot interaction.

❖ Example code for WP3-CEApi-Pilot integration, currently consisting of a working example of

Verovio MusicXML->MEI conversion on eligible data contained in the CE database (Annex B).

This deliverables organizes as follows. First, we present an overview on the TROMPA Processing

Library and a short description of its components (Section 2). In Sections 3, 4 and 5 respectively we

provide details of the above-mentioned functionalities. Section 6 concludes this deliverable with the

planning of the TROMPA Processing Library for the next period.

2. The TROMPA Processing Library Overview
Trompa Processing Library (TPL) responsibility is to offer a communication layer between Use Cases,

CEapi and WP3 technologies. An overview of the TROMPA Processing Library workflow is shown in

Figure 2.1. Each time a use case requests any type of data and metadata, this is done via TPL

functionalities which derive from:

❖ The Multimodal Component, which allows a Pilot user to browse (and combine) CE

references to public music data, regardless of content type. Moreover the Multimodal

Component provides a graphical interface to browse the CE data.

❖ The GraphQL Interface, which provides Pilot developers rich access to the TROMPA dataset,

stored as public data references in the CE database.

❖ Extended API Functionalities, which allows the (real-time) definition, creation, completion

and consumption of WP3 technology ‘jobs’ on public music data referenced in the CE

database.

1https://trompamusic.eu/deliverables/TR-D5.1-Data_Infrastructure_v1.pdf

TR-D5.3-TROMPA Processing Library_v1

11

https://trompamusic.eu/deliverables/TR-D5.1-Data_Infrastructure_v1.pdf

Figure 2.1 TROMPA Processing Library Workflow

The processing workflow for triggering a WP3 algorithm/task is as follows:

❖ Initially, the WP3 algorithm maintainer defines a ‘job’ template in the CE database, using

extended CEapi functionality for this purpose. A job template corresponds to a specific task

(algorithm) to be run.

❖ The use case can retrieve the potential tasks to be run on a specific type of data from CEapi

and during its execution can search a certain descriptor for a specific piece of data. This can

be done by either using the TROMPA Multimodal Component or by executing a Full GraphQL

Query.

❖ If the task was already run on this piece of data, the use case can retrieve and show the

result immediately. If the piece of data does not exist, the use case requests the running of a

‘task’ on the selected piece of data by submitting the appropriate GraphQL request as

defined by the WP3 algorithm maintainer.

TR-D5.3-TROMPA Processing Library_v1

12

❖ On reception of this request, the Extended API Functionalities component creates the

necessary ‘job’ nodes as defined by the WP3 algorithm maintainer.

❖ Either the WP3 process (tool) regularly polls the CEapi for new ‘jobs’ created, or subscribes

to ‘job’ creation triggers via a websocket. In principle, these tools are not inside the CE

facilities.

❖ On reception of a new job, the WP3 tool retrieves the necessary parameters, validates and

starts the task, then updates the task status in the CEapi. To track the progress of the

execution, either the use case regularly polls the CEapi for task updates, or subscribes to

update triggers via a websocket.

❖ Optionally, the tool updates the task status regularly to reflect progress, and optionally, the

use case polls or subscribes to task updates to remain informed of progress updates.

❖ Once the WP3 tool is run and processed the requested task, it stores the output in an

external repository, then creates a reference node for the storage location in the CEapi, then

creates a result relation between task node and reference node.

❖ Once the result is related to the task node, the WP3 tool updates the task status to

complete.

❖ Either by polling or by subscription, the use case receives the ‘complete’ update.

❖ Use case retrieves the result reference and can create additional relations between result

and pre-existing nodes for enriching, semantic interlinking and provenance tracking

purposes.

The proposed workflow provides the flexibility of running algorithms ‘on demand’, i.e. running a

specific algorithm on a specific data item when requested by the use cases, as well as in a ‘batch’

mode, i.e. running an algorithm in a large amount of data prior to the execution of a use case.

3. GraphQL Interface

3.1 Overview

The CEapi’s main client interface is an implementation of GraphQL. GraphQL is an open standard 2

API query language that is designed to allow clients flexible API access to datasets but also to

processes, responding either with customized data objects aggregated from data from the database

or from secondary data stores or processes. Its online specification manual can provide detailed 3

background information for the following sections.

The internal data model of the CE is based on base level types of the schema.org model and a 4

number of schema.org extensions that fit the needs of the TROMPA project. The default schema.org

properties were supplemented with properties derived from well known ontologies. These

supplementary properties express CE needs for metadata, interlinking, internationalization, and

provenance tracking.

Each “node” in the internal data model of the CE corresponds to a certain item of the ontology

(e.g. Artist/ Creative Work), which is illustrated in Figure 3.1. A detailed description of the ontology is

can be found in the document CE Data Import Guidelines. This document will be made available

2 https://graphql.org/
3 https://graphql.org/learn/
4 https://schema.org/

TR-D5.3-TROMPA Processing Library_v1

13

https://graphql.org/
https://graphql.org/learn/
https://schema.org/

online as the development of the Contributor Environment progresses. GraphQL broadly supports

three types of functionalities that are accessible through the GraphQL API interface:

❖ Queries: Queries allow to search data (nodes) in the GraphQL database. The queries are

used to search and retrieve data nodes in a “read-only” mode.

❖ Mutations: Contrary to queries, mutations are queries to add, remove or update data in the

database.

❖ Subscriptions: Allow clients to subscribe to changes in the dataset, for example after a

particular node was updated or a particular type of node was created. Once such a change

event occurs, the client will be notified in real time.

In the rest of this section we will provide a brief but comprehensive description of three types of

functionalities. Complete examples of query and mutation functionalities are provided in Annex A.

Figure 3.1 - CE Data Model

3.2 Queries

We define two main types of queries, the simple queries and complex queries. Typically, a simple

query consists of:

❖ The name of the query (optional).

❖ Type of entity for which is queried (i.e. one of the entities of the taxonomy provided in

Figure 4.1, e.g. a Music Recording).
❖ Conditions: the conditions under which this entity is queried. For example, “a music

recording (entity) of Composer Gustav Mahler (condition)”. Conditions are optional.

❖ List of properties to be included in the response. For example, “get the Title and Description

(response types) of the Music Recordings (entity) of Composer Gustav Mahler (condition).

The result typically consists of a json object containing:

❖ The “data” object with the result(s).

❖ The name of the query responded to.

TR-D5.3-TROMPA Processing Library_v1

14

❖ The actual data, corresponding to the list of properties to be included.

Regarding complex queries, the difference to simple queries is that the properties requested by the

query can be complex, i.e. composition from other nodes. Examples of queries can be found in

Annex A-1.

3.3 Mutations

Mutations are queries that add, update or remove data in the database. There are seven types of

GraphQL mutations described below:

❖ Node creation: A create mutation typically consists of

➢ a list of scalar parameters that correspond to the type properties for which the value

needs to be set and

➢ a list of properties to be returned once the node is created.

❖ Node update: The update query is similar to the node creation, with the difference that the

identifier of the node to be updated must be passed along with the update parameters.

Properties that are left out will not be updated.

❖ Node deletion: When deleting a node, only the identifier of the node can be passed as a

parameter. When a node gets deleted, all its incoming and outgoing relations to other nodes

will also be deleted.

❖ Add relation between nodes: For each relation, which is a property containing another

node, there is a dedicated mutation query. For example there is a predefined mutation for

relating an event node to a composer named AddEventComposer:

AddEventComposer(

 from: _EventInput
 to: _LegalPersonInput
)

This mutation takes as input an Event node and a LegalPerson node and adds its relation to the

database. Moreover, it is rational and not possible to create multiple relations of the same type

between the same nodes.

3.4 Subscriptions

Currently, subscriptions can be created for mutations on ControlAction type nodes and for

ControlAction nodes created through the RequestControlAction request. In the final version of this

deliverable, we intend to allow subscriptions to be created for mutations on nodes of any type.

TR-D5.3-TROMPA Processing Library_v1

15

4. Multimodal Component

4.1 Overview

The CE database will contain references to public online musical data in many different formats. The

Multimodal Component assists Pilot developers to retrieve that assorted data and present it to users

in a comprehensive way.

To this end, the Multimodal Component offers ‘shortcut’ access to CEapi GraphQL functionalities

plus example UI components that give users access to these functionalities and enable them to

consume the rich TROMPA data set.

4.2 Communication with the Use Cases

Currently, the Multimodal Component consists of a React application that implements search

functionality on CE database content through the GraphQL interface. A Use Case developer can

include this React component and use (parts of) its code and UI elements where they fit Use Case

specific functionalities. The React component can also serve as a working example for developers to

build Use Case specific implementations on the same GraphQL functionalities or to use another

technology stack.

4.3 A Graphical Interface for Accessing Data

The Multimodal Component offers a GUI to search the TROMPA dataset as contained in the CE

database, applying the mockups as researched and produced in Task 5.3 - Multimodal Integration of

Music Data. Figure 4.1 presents the output of the query of ‘Gustav Mahler’ to the CE database. On

the left side we can see the different categories of the items matching the query. Note that these

categories are the same categories of the CE data model which is illustrated in Figure 3.1. For each

result of the query additional information is provided, as for example the source of item (e.g.

wikidata, musicbrainz), and links to related items. For instance a composer is linked to her/his

compositions, and the compositions are linked to scores and performances. The end user can get

into more deep in the structure of the data, as for example by filtering only by People entity, as

shown in Figure 4.2. Figure 4.3 shows a screenshot of a demo that is available online . The demo site 5

will be updated regularly to reflect the latest developments of the Multimodal Component search

functionalities.

5 https://trompa-ce-search.netlify.com/

TR-D5.3-TROMPA Processing Library_v1

16

https://trompa-ce-search.netlify.com/

Figure 4.1 Search mockup - initial search

TR-D5.3-TROMPA Processing Library_v1

17

Figure 4.2 Search mockup - refined search on People

TR-D5.3-TROMPA Processing Library_v1

18

Figure 4.3 Search implementation - unrefined search on People

TR-D5.3-TROMPA Processing Library_v1

19

4.4 Shortcut functionality to GraphQL

Currently, the only shortcut functionality that was worked out in the Multimodal Component is a

search component that is able to disclose all the public musical data references stored in the CE

database. At this point, there are no actionable plans for other CEapi functionalities to be

streamlined for generic application in Use Case development. As the GraphQL interface is very

versatile and flexible, it allows rich access to the CE database. For most applications, the GraphQL

interface will provide sufficient functionality to probe the CE database.

Once WP3 tasks are being integrated with WP5 and start making interlinked contributions to the

TROMPA dataset, it is possible that additional generic functionalities can be conceived of and added

to the CEapi. Adding matching functionality to the Multimodal Component should help Pilot

developers to integrate these functionalities in WP6 tasks with options that cannot be provided

through the GraphQL interface directly.

The search interface described in 4.3 consists of a GUI and React code that makes use of CEapi

functionality through the GraphQL interface. Here follows an overview of this CEapi search

functionality, as exploited by the Multimodal Component. Of course, this functionality can be

exploited by use case developers in other ways than by implementing parts of the Multimodal

Component code.

4.4.1 Basic metadata search

The searchMetadataText query generates results on the basis of a fulltext index on the title, 6

description, subject and creator properties of all CE schema types that extend the

MetadataInterface. The results will be ordered according to search scores generated along with the

database query results, as shown in Figure 4.4.

6 https://neo4j.com/docs/cypher-manual/current/schema/index/#schema-index-fulltext-search

TR-D5.3-TROMPA Processing Library_v1

20

https://neo4j.com/docs/cypher-manual/current/schema/index/#schema-index-fulltext-search

Figure 4.4 CEapi Search implementation - basic GraphQL search query

4.4.4 Advanced metadata search

The fulltext index is maintained on a selection of properties, which in turn is maintained on a

selection of schema types (extending MetadataInterface). This setup allows the search functionality

to be enhanced by optionally filtering on these properties and schema types:

❖ Allow to search on a subset of indexed properties

❖ Allow to search on a subset of indexed schema types

❖ Allow to search on any combination of those two subsets

As the CE data model is based on a semantically sound schema aimed at providing structured data

on the internet , this quite naturally leads to the ability to filter the search results in a semantic way 7

(Figure 4.5)

7 https://en.wikipedia.org/wiki/Schema.org

TR-D5.3-TROMPA Processing Library_v1

21

https://en.wikipedia.org/wiki/Schema.org

Figure 4.5 CEapi Search implementation - filtered GraphQL search query

This way, the filtering options allow a user to search for Persons with a certain name, or on

MusicCompositions answering to certain description keys, etcetera.

The searchMetadataText functionality also allows Use Case developers to present their users with

well defined subsets of TROMPA data that could fit a specific use case, like only DigitalDocuments or

only AudioObjects and VideoObjects created by a certain Person.

TR-D5.3-TROMPA Processing Library_v1

22

5. Extended API Functionalities to support WP3-WP6

integration
This section provides details on the mechanism by which the technologies of WP3 can be invoked by

the user pilots (WP6) through the Contributor Environment and the GraphQL API. At its most basic,

this integration mechanism offers automation for the following process:

● User Pilot chooses target content, referenced in CE database

● User Pilot user creates a job to run a process on this content

● WP3 Process picks up job

● WP3 Process executes job on target content, creating and storing a result

● WP3 Process writes reference to result in CE database

● User Pilot picks up result

● User Pilot user consumes result

In the following subsections we will describe the technical details of this mechanism.

5.1 Data Model for WP3 Processes

5.1.1 Overview

Process jobs are maintained as GraphQL nodes in the database. A subscription mechanism can 8

enable WP3 processes actively updated on job creation and status updates in real time. This way, the

CE becomes the intermediary of Use Case-WP3 interactions. This offers a standardized solution for

integration and ensures WP3 produced data is referenced and gets interlinked with the larger

TROMPA dataset. The generic Component-CE-WP3 interaction solution is based on a schema.org 9

compatible data model that can be broken down into three parts:

● Template Nodes: They are maintained by WP3 developers and used by User Pilots. The

Template Nodes represent generic algorithmic processes, e.g. “the extraction of Pitch Class

Profiles (PCP) features of an audio piece”.

● Instance Nodes: They are created by User Pilots and maintained by CE. Instance Nodes

correspond to specific tasks requested by User Pilots, e.g. “the extraction of PCP features of

the audio piece X”.

● Public Nodes: - They represent the (public) content on which the WP3 process is run (the

audio piece X) and the corresponding results (the PCP features).

8 https://graphql.org/blog/subscriptions-in-graphql-and-relay/
9 https://schema.org/

TR-D5.3-TROMPA Processing Library_v1

23

https://graphql.org/blog/subscriptions-in-graphql-and-relay/
https://schema.org/

5.1.2 Template nodes

Figure 5.1. Template nodes schema.

Figure 5.1 illustrates the template notes and how they relate to an “algorithmic process”. Each WP3

process application, e.g. an alignment tool, will need a SoftwareApplication node in the database. 10

This is a node that can tie a number of available algorithmic processes to one of the TROMPA

participants or to a software bundle.

Each of the available algorithmic processes needs to be represented as an EntryPoint node. This 11

entry point enables the user pilot to request, monitor and control the running of a process. An entry

point is what is presented by the Component as an available functionality, like the automatic analysis

of a recording or the annotation of a digital score. The EntryPoint needs to be related to the

SoftwareApplication through the actionApplication property. The ControlAction is the `template` 12 13

for a user’s request for a certain process to be run and is related to the EntryPoint through the

potentialAction property. It is like a super-class for a potential job that needs to be carried out by the

process represented by the EntryPoint. For a process job to be able to run, probably a number of

parameters need to be passed along to tell the process on what target data to act on, plus some

parameters for tuning the process or naming of the results. Any number of required or non-required

scalar arguments (numbers, strings etc.) can be set up by adding PropertyValueSpecification nodes 14

and relating them to the ControlAction through the object property. Required parameters that 15

10 https://schema.org/SoftwareApplication
11 https://schema.org/EntryPoint
12 https://schema.org/actionApplication
13 https://schema.org/ControlAction
14 https://schema.org/PropertyValueSpecification
15 https://schema.org/object

TR-D5.3-TROMPA Processing Library_v1

24

https://schema.org/SoftwareApplication
https://schema.org/EntryPoint
https://schema.org/actionApplication
https://schema.org/ControlAction
https://schema.org/PropertyValueSpecification
https://schema.org/object

point to content available in the CE, like the video recording the user needs the process to act on,

can be specified by adding and relating a Property node through the same object property. 16

Together, these EntryPoint, ControlAction, PropertyValueSpecification and Property nodes

determine what the user pilot will interact with when requesting and controlling a process. This

model provides enough information to dynamically generate a process-specific user interface. A user

requesting a job through this interface will instantiate the model as a job request which can then be

picked up, followed and controlled by the user and by the algorithm process application.

5.1.3 Instance nodes

Figure 5.2. Instance nodes schema.

The CE GraphQL interface exposes a predefined mutation (RequestControlAction) that will create a

set of nodes based on the ‘template’ as presented in Section 5.1.2. In effect, the nodes created by

this request instantiate a ‘job’ in the CE database that can now be acted on, followed and updated.

If the RequestControlAction request passes validation, it will create a ControlAction node that is a

copy of the ‘template’, plus one or more PropertyValue nodes, derived from the template property 17

nodes, that contain the parameters needed to execute the algorithm process. The thus created

ControlAction serves as the ‘job’ to be executed, and can now be followed and acted on by both the

requester (Component user) and the algorithm maintainer.

16 https://meta.schema.org/Property
17 https://schema.org/PropertyValue

TR-D5.3-TROMPA Processing Library_v1

25

https://meta.schema.org/Property
https://schema.org/PropertyValue

5.1.4 Public nodes

Figure 5.3. Public nodes schema.

The starting point of most algorithm process requests will most likely be one or more (music)

content files that are already known in the CE database, or were just uploaded by the user. At the

process algorithm request (RequestControlAction), a PropertyValue node was generated that will

point at this selected content file reference through the nodeValue property.

After picking up and completing the ‘job’ by, for example, creating a result file at a public

location, the algorithm process application needs to create a reference node in the CE database for

this result file. It can then relate the ControlAction ‘job’ node to this result through the result

property. To allow this result file to turn up in user searches, or offer it to a user who is about to

request the same algorithm process on the same source, it is suggested to interlink this new

reference to as many relevant nodes as possible. This interlinking is the responsibility of the

algorithm process application.

5.2 Communication with the GraphQL Component

5.2.1 Algorithm Subscription

Following the data model presented in Section 5.1, each algorithm must “subscribe” it self to the

Contributor Environment. The procedure to do so is summarized as:

❖ Create a SoftwareApplication node in the CE: This node does not correspond to the specific

algorithm, but rather to the software/library that hosts the specific algorithm.

❖ Create an EntryPoint node in the CE: The entry point corresponds to a specific

algorithm/method to be run.

❖ Create an actionApplication relation between SoftwareApplication and EntryPoint: This

actions defines that this EntryPoint is a part of the SoftwareApplication node.
❖ Create a ControlAction template node: This ControlAction node will be the model for the

‘job’ created for a specific algorithm process requests. Each request will result in a copy of

this ControlAction node to be created (instantiated) which will then represent the ‘job’ that

can be acted on and followed.

❖ Create potentialAction relation between EntryPoint and (template) ControlAction: Relates

the ControlAction template to the specific EntryPoint.
❖ Create Property template node: Corresponds to existing nodes in the CE database, probably

referencing a content file at some public repository. These will be the inputs to the WP3

algorithms.

TR-D5.3-TROMPA Processing Library_v1

26

❖ Create PropertyValueSpecification: Corresponds to a scalar parameter (string, number,

on/off checkbox) that needs to be given by the user as ‘settings’ inputs, in order to tune the

algorithm process.

❖ Create object relation between ControlAction and Property/PropertyValueSpecification

template nodes respectively.

5.2.2 Algorithm Invoking

Following the data model presented in Section 5.1, each algorithm is invoked by the user pilots,

using the RequestControlAction.

❖ The user pilot makes a RequestControlAction for a specific EntryPoint. The CEapi translates

this request by creating a set of nodes on the basis of the EntryPoint/ControlAction

template and subsequently responds with the thus created ControlAction, including its

unique identifier. With this identifier, the user pilot can then subscribe to the CEapi and and

receive a notification each time thus created ControlAction is updated.

❖ From the WP3 program/algorithm perspective, there are two ways to get notified that a new

task has to be run:

➢ Subscribe to the CEapi on RequestControlAction requests on a specific EntryPoint,

through the websocket: This functionality offers the possibility to handle user

requests for algorithms in real-time.

➢ Frequently check for tasks in the CE: It is possible to query for ControlActions

created on the basis of a certain EntryPoint. In this way, the software developed

under WP3 can check if new tasks have to be run at convenient times or intervals.

This functionality offers WP3 software to handle user requests for algorithms in

batches.

5.2.3 Algorithm Processing and Monitoring

Since the algorithm has been invoked, it can update the status of ControlAction item created during

its process until the process is completed:

❖ Once the algorithm receives the job, it can update the status of the ControlAction node to

‘received’.

❖ While the algorithm is running, it can update the status of the ControlAction node in order to

provide more information (e.g. ‘running’) .

❖ Once the process has completed, the algorithm process application should write the result

to a public location and add a reference to this result in the CE database:

❖ With the identifier obtained from the response of the result node (e.g. DigitalDocument)

creation, create a result relation between ControlAction and DigitalDocument:
❖ When the algorithm process application now updates the ControlAction actionStatus to

‘complete’, the process request response cycle is completed.

5.3 Individual Tools

TR-D5.3-TROMPA Processing Library_v1

27

5.3.1 Overview

The process described above provides a flexible framework for communicating WP3 tasks/jobs with

the CE data, and the user pilots. Figure 5.4, shows a general schema that will be adopted for all WP3

components.

Figure 5.4. Schema of a task specific software organization.

For running a specific task, two different types of components are involved:

❖ Wrapping software: This software is responsible for handling the communication and the

requests from/to the GraphQL interface of the CE, and trigger the specific Task software

needed to run.

❖ Task software: The software that run the actual computations of the task.

In general, these software might be hosted in different servers. This procedure is global (generic) and

can be applied to all of the technologies under WP3. In this section, we will provide more details on

the WP3 technologies side, e.g. where these technologies will be hosted and run, and where the

results will be saved. In the rest of this section, we will dedicate one subsection to each of the Tasks

3.2 - 3.6. Regarding Task 3.6 Multimodal Cross Linking, although the corresponding technologies are

not directly linked to any of the user pilots (i.e. these algorithm will not be triggered by certain user

pilots) but are rather technologies that will be run in the data of the CE outside of the pilots (i.e.

linking of CE data to contextual information, external sources such as newspapers, etc), these are

still inside the framework of the Trompa Processing Library for reasons of clarity.

TR-D5.3-TROMPA Processing Library_v1

28

Figure 5.5. Overview of the WP3 Application Components

Based on the current status of the integration, an overview of the organization of the software

components is illustrated in Figure 5.5. In principle, the intention is to run all the Wrapping Software

(grey boxes) components in a dedicated server provided by UPF, which are responsible for handling

the communication with the GraphQL interface, the job requests, and trigger and invoking the

appropriate programs. However, where the actual computations will run depends on the developers

of the individual tasks. For instance, regarding Task 3.3 (and some subtasks under Task 3.2) related

software, although the software for handling the job requests will run on the UPF server, the

synthesis task will run on the Voctro Labs infrastructure; or for Task 3.5 there is the intention to use

one of the UPFs computing servers. The same stands for other tasks as well; the intention is to have

as many as possible components run in the same hardware as the project progresses. In the rest of

this section, we provide some details on the individual tasks and subtasks of WP3.

5.3.1 Music Description

Below are described the technologies under Task 3.2 - Music Description, in correspondence with

the Deliverable 3.2 - Audio Description.

5.3.1.1 Low / Medium Audio Descriptors

Low level and medium (tonal and harmonic descriptors) correspond to Section 2.2.1 and 2.2.2 of

Deliverable - 3.2 Music Description . These descriptors will be extracted with the use of Essentia [1] 18

software. Essentia is a C++ library with Python bindings for audio analysis, synthesis and description.

It contains a collection of algorithms that implement standard digital signal processing blocks, a large

set of spectral, temporal, tonal and high-level music descriptors, statistical characterization of data.

18 https://trompamusic.eu/deliverables/TR-D5.3-TROMPA_Processing_Library_v1

TR-D5.3-TROMPA Processing Library_v1

29

https://trompamusic.eu/deliverables/TR-D5.3-TROMPA_Processing_Library_v1

Essentia focuses on optimization in terms of robustness, computational speed and low memory

usage. After essential is subscribed in the CE, an EntryPoint will be created in the CE that

corresponds to each type of (low-level/tonal/harmonic) descriptors. A program that listens to the

appropriate CE websocket for requests related to that EntryPoint and triggers Essentia will be a part

of the Trompa Processing Library. Essentia takes as input audio files and will be hosted in UPFs

dedicated computer/server for TROMPA related computations. All descriptors can be run in both

batch / single file mode. The descriptors will be stored at a UPF server, and will be accessible through

public URIs. The output format of the descriptors will be either json or binary files. The

parametrization of the algorithm will be done by the corresponding task scientists, in order to

provide the best representations suited for TROMPA. Thus, in general, parametrization of the

descriptors (i.e. from user pilots, or the users) is not necessary and will not be possible.

5.3.1.2 High Level Audio, Symbolic and Video Descriptors

Regarding high level descriptors that correspond to Rhythm Descriptors, Music Similarity, Emotion

Tag Annotation (sub-sections 2.2.3, 2.2.5 and 2.2.6 of Deliverable - 3.2 Music Description), Symbolic

Descriptors (Section 2.3) and Video Descriptors (Section 2.4) we will follow the same approach with

the one described in the previous subsections, with the only difference that the algorithm software

will not be Essentia, but inhouse UPF methods or other open source state-of-the-art methods that

will be deployed.

5.3.1.3 Singing Voice Analysis

As depicted in Figure 5.5, the singing analysis technology to be developed in Task 3.2 will be

deployed using different algorithms: Voiceful Cloud’s VoDesc, Essentia and the TROMPA Choir

Singing Analysis algorithm.

For the first one, we will integrate Voctro Labs’ Voiceful Cloud API, using the VoDesc API. The

documentation for this Cloud API can be found at . VoDesc computes a number of descriptors on 19

singing voice including dynamics (energy), pitch and notes, onsets, and pauses.

For the latter, we will deploy the algorithm to compute choir-singing-specific descriptors

developed in Task 3.2. This algorithm requires the score of the performed piece, the result of VoDesc

and the score of the piece. Two EntryPoints will be created in the CE that correspond to the

aforementioned analysis algorithms. Note that Essentia is already assigned EntryPoints (see Section

5.3.1.1) for the low/medium level features. Then, three programs listening to the appropriate CE

websocket for requests related to those EntryPoints will be part of the Trompa Processing Library.

One of them will simply handle the communication between the CE and the Voiceful Cloud service.

These programs will be hosted in UPFs dedicated computer/server for TROMPA related

computations; the VoDesc algorithm will be (is) hosted in the Voiceful Cloud. The VoDesc algorithm

takes as input the audio of the singing performance and outputs a JSON-formatted file with the

computed descriptors. The same applies for Essentia. The Choir Singing Analysis algorithm will take

three nodes as input: the score of the performed piece, the VoDesc result, and the result of the

Essentia feature extraction. In the case where research designates the use of additional features

outside Essentia, there the algorithm might also require the audio of the performance. It will also

output a JSON-formatted file with the computed descriptors.

19 https://cloud.voctrolabs.com/docs/api

TR-D5.3-TROMPA Processing Library_v1

30

https://cloud.voctrolabs.com/docs/api

The analyses will be able to be run on batch and single file mode. For batch mode, in the case of

VoDesc, the script running in the UPF server will take care of scheduling the calls to the Voiceful

Cloud API, which does not support batch mode. The results of VoDesc will be stored in the Voiceful

Cloud S3 servers; the descriptors of Essentia and the Choir Singing Synthesis algorithm be stored at a

UPF server. In both cases, these results will be accessible through public URIs. The parametrization of

the algorithm will be done by the corresponding task scientists, in order to provide the best results

suited for TROMPA. Thus, in general, parametrization of the descriptors (i.e. from user pilots, or the

users) will not be possible.

5.3.2 Audio Processing

The singing synthesis will be integrated using Voctro Labs’ Voiceful Cloud service. The motivation for

using this platform is twofold: first, it is an existing working solution for singing synthesis that already

stores its results in S3 servers, publicly accessible through URLs to which the CE can store references;

second, it facilitates the immediate adaptation of the developed technologies in other uses cases for

exploitation that may arise beyond the project.

Since the synthesis will occur in the Voiceful Cloud, the scripts that will run in the UPF dedicated

server (Figure 5.5) will just take care of the communication with the CE. The will subscribe to the

relevant nodes in the CE following the procedure explained in 5.2.1, and will call the Voiceful Cloud

service during execution. Example code snippets of how this cloud service is used can be found

online . This Cloud API service will be extended for TROMPA and will consist of two main tasks: 20

❖ Deploying the new models in the cloud servers. As detailed in Deliverable 3.3 - Audio

Processing , choir singing synthesis has specific requirements beyond those of solo singing 21

synthesis. During the project, new synthesis models will be created from new recordings for

multiple languages. These new models will be made accessible through the cloud service.

❖ Adapting the API to support the choir case. Currently, the VoSynth API accepts monophonic

input scores in MusicXML format, as well as in other specific .txt and .json formats for

synthesis. For the choir use case, the API will be adapted in order to accept also MEI scores

and to support polyphonic material, i.e. receiving a score containing all the voices to be

synthesized and outputting one audio file per voice.

As depicted in Figure 5.5, the singing synthesis technology developed in Task 3.3 will be integrated

into the TROMPA processing library through Voctro Labs’ Voiceful Cloud API, using the VoSynth API.

The documentation for this Cloud API can be found online . 22

An EntryPoint will be created in the CE that corresponds to the singing synthesis. A program that

listens to the appropriate CE websocket for requests related to that EntryPoint and calls the Voiceful

Cloud to perform the synthesis will be a part of the Trompa Processing Library. The program taking

care of the communication with the CE will be hosted in UPFs dedicated computer/server for

TROMPA related computations; the synthesis algorithms will be hosted in the Voiceful Cloud. The

synthesis algorithm takes as input the score and outputs as many audios as voices are contained in

the score (e.g. one audio for Soprano, one for Alto, one for Tenor and one for Bass). The synthesis

will be able to be run on batch and single file mode. For batch mode, the script running in the UPF

20 https://www.voiceful.io/developers
21 https://trompamusic.eu/deliverables/TR-D3.3-Audio_Processing_v1
22 https://cloud.voctrolabs.com/docs/api

TR-D5.3-TROMPA Processing Library_v1

31

https://www.voiceful.io/developers
https://trompamusic.eu/deliverables/TR-D3.3-Audio_Processing_v1
https://cloud.voctrolabs.com/docs/api

server will take care of scheduling the calls to the Voiceful Cloud API, which does not support batch

mode.

The results will be stored in the Voiceful Cloud S3 servers, accessible through public URIs. The

parametrization of the algorithm will be done by the corresponding task scientists, in order to

provide the best results suited for TROMPA. Thus, in general, parametrization of the descriptors (i.e.

from user pilots, or the users) will not be possible. More concretely, we will make use of the Voiceful

Cloud “Presets” capability. This allows to modify parameters from the cloud management console

while keeping the same call from the client side.

5.3.3 Visual Analysis of Scores

A machine-readable representation of a musical score for use in a project such as TROMPA can be

generated in one of three basic ways: manual encoding, optical music recognition (OMR) or

conversion from an existing representation. Manual encoding (using a score editing program such as

Finale, Sibelius, Dorico or MuseScore) is time-consuming and requires considerable expertise, but is

useful for scholarly transcriptions or performing editions of individual works; in general one expects

the quality to be high. Conversion methods depend on the existence of files in formats such as MIDI,

which can be ‘translated’ into a suitable data-representation under certain heuristic assumptions;

these assumptions cannot in general be relied upon as they concern the addition of information that

may not be present in the source format. For example, MIDI does not represent barlines/measures

(all note-events are merely time-stamped) and no pitch-spelling information is present (there is no

distinction in MIDI between an A# and a Bb, as these are played by the same key on an electronic

keyboard).

For several purposes within TROMPA involving the on-screen display of scores we shall be using

OMR technology to extract complete or partial machine-readable score representations in the MEI

format from scores saved as PDF or other graphical formats. While there are several commercial

programs that might be suitable for very clean, modern engraved scores, we shall be using

public-domain scores often printed more than a century ago and which can present significant

challenges in this respect. OMR software is by no means reliable, and its performance is highly

dependent on the condition of the original materials, the quality of photography and aspects of

digitisation beyond our control. For this reason we choose to work with open-source programs

which can be modified or adapted to our purposes, which can be run in batch-mode over large

collections of music, and which save their results in a form (such as MusicXML) which can be easily

converted to MEI for use within TROMPA.

OMR is also dependent on the style of the music notation. In general, it is not possible to use it on

manuscript scores at all, and only certain types of historical printed scores are useable. For standard

modern musical notation we shall be using the open-source program Audiveris, which is under 23

continuous development and explicitly focussed on the demands of the IMSLP resource which we

also make use of. Audiveris is generally reliably accurate with good-quality scores in good condition

and well photographed/digitised. With poorer-quality printing or photography, like all OMR

programs, its accuracy declines markedly. However, for some purposes in TROMPA we do not need

full OMR transcription into MEI; a partial representation is sometimes sufficient. For example, in

order to align a score with audio (so that pages can be ‘turned’ on-screen as the music plays) it may

only be necessary to locate all the barlines in the score and record links to time-offsets within the

23 https://github.com/Audiveris/audiveris

TR-D5.3-TROMPA Processing Library_v1

32

https://github.com/Audiveris/audiveris

audio stream; first experiments suggest that Audiveris is very reliable for this, even when

image-quality is poor.

For the music-scholars’ use case within TROMPA, we shall also be working with vocal music from

the 16th century. While much of this is available in modern editions (many of these are in IMSLP), we

shall also work with facsimile images of the original sources (which may include music not available

in modern editions). These were in almost every case in the form of individual (monophonic)

part-books for a single singer, printed from type, which requires a different approach than engraved

modern notation. We shall thus use the specialist software Aruspix, with which the GOLD team has 24

long-term experience, for OMR on resources such as the British Library’s Early Music Online. Again,

the accuracy of recognition is very dependent on the condition of the original materials, but the

output of Aruspix is mostly reliable, at least in terms of relative pitch, which means that we can use

the MEI output to generate indexes which can be used to retrieve pages of the original source from a

given score or fragment thereof, even in the presence of a considerable degree of OMR error. This

novel music-retrieval paradigm has great potential in musicology, and need not be restricted to early

music, as it can be used just as easily with the output of Audiveris, so we shall be experimenting with

the possibility of content-based indexing of all TROMPA scores. Like Audiveris, Aruspix can be run as

a batch program, but it is also fast enough to be used on the fly on user-uploaded images of 16c

music pages; the uploading and recognition of a page, query-extraction and search of a database of

32,000 pages in the EMO test collection takes under 10 seconds, including network

transfers.[Crawford, T., Badkobeh, G. and Lewis, D. (2018) Searching Page-Images of Early Music

Scanned with OMR: A Scalable Solution using Minimal Absent Words. ISMIR 2018]

Similar to other WP3 technologies, each of the software that will be used will be assigned to an

EntryPoint. The wrapper software (Figure 5.4) will be (possibly) hosted on the UPF server. Regarding

the computations components, the infrastructure that will be hosted is to be determined in the

future with respect to the computation demands, which depend on the use cases that involve OMR.

With both the early music and classical repertoire for which these software packages will be used

within TROMPA, there is no need for real-time or on-the-fly recognition (apart from the

uploaded-image search mentioned above, which will be handled externally to TROMPA via an API

managed by Swiss RISM), and recognition can be run in the background as a batch process. An

important issue is the management of the associated image and source metadata, which we

anticipate will be handled by the Contributor Environment. The output and extracted

features/indexes will be stored centrally under the management of the Contributor Environment and

using the affordances of Linked Data, which further allow us to include provenance information such

as the program used, details of image preprocessing (such as splitting of double-page spreads into

individual pages) and any non-default parameter settings used in the recognition process.

5.3.4 Alignment of Music Resources

Alignment of Musical Resources (Task 3.5) concerns the interlinking of multimodal representations

of a musical expression at different levels of granularity. At current stage of development (M12),

modalities involve musical score encodings (encoded using, or converted to, the MEI format); and

MIDI-encoded performance renditions. Audio-to-audio alignments will also be targeted in future

development. Various algorithms and software packages to accomplish this task are described in

24 http://www.aruspix.net

TR-D5.3-TROMPA Processing Library_v1

33

http://www.aruspix.net/

Deliverable 3.5 - Multimodal Music information Alignment . For present development, we are 25

focussing our efforts on the MAPS tool (“Matcher for Alignment of Performance and Score”) under

ongoing in-house development at MDW, which has the advantage of natively supporting MEI.

MAPS will be called through a wrapper layer (“MAPS wrapper”) responsible for accepting new

jobs (e.g., performances) from TROMPA users, registering these within the CE, and spawning MAPS

instances to complete the jobs. MAPS instances are processor intensive and should thus be deployed

on a dedicated high-performance server - potentially at UPF. The MAPS wrapper is a comparatively

light-weight web service that could be deployed separately, e.g. at MDW. These decisions are as yet

under discussion and will be settled in due course. The output generated by each job (i.e., RDF triples

instantiating the alignment data model, see D3.5) will be stored in a Linked Data Platform (LDP)

server at MDW, referred to by URI (as DigitalDocuments) by the CE.

The input of the MAPS in the core encoding (only required once per MEI file), the MIDI recording

(one per each performance; either as a MIDI file for offline processing, or as a live MIDI stream for

online processing), and the output is the outcome of the alignment process (RDF triples instantiating

the alignment data model) are stored in a Linked Data Platform (LDP) server at MDW, referred to by

URI (as DigitalDocuments) by the CE. Alignments are generated on a note-level; higher-granularity

alignments are automatically determined from this by mapping upward from notes within the MEI

hierarchy. Additionally, each alignment is associated with a confidence measure reflecting the

coefficient of variation (a measure of “peakiness”) of the MAPS hidden Markov model state

probability distribution; it varies from 0% (a particular MIDI event can be associated to any MEI note

with equal likelihood) to 100% (the MIDI event is associated with a particular MEI note with perfect

certainty).

MAPS supports both offline processing using MIDI files, and online processing using streamed

MIDI events. Offline processing is more reliable but requires long processing times which may impact

usability (e.g., an 11-minute performance of Beethoven’s 32 Variations in C Minor - WoO 80 takes

around 7 minutes to compute on a desktop workstation; though improvements are expected with

further development, and on machines with more CPU cores). Online processing returns results in

real-time (or just after a performance rendition is completed, depending on user requirements), with

potentially reduced reliability. Descriptors generated by the alignment process will be stored in the

LDP server hosted by MDW, and referred to (by URI) by the CE.

Regarding the parameterization of the tool, users must provide a score encoding (MEI file). In

batch mode, a MIDI file must be provided; in online mode, MIDI events are streamed from an in-situ

device colocated with the performance (e.g. iPad connected to a MIDI piano). Further parameters

can be specified to configure the hidden Markov model; choose and configure a tempo model; and

configure pitch profiles.

Regarding error handling, non-valid MEI files will be detected and cause an exception to be

raised; this will be intercepted by the MAPS wrapper and dealt with appropriately (by updating the

CE node to an error state). Non-valid MIDI files will be similarly handled in batch mode. Dropped

network connections during MIDI streaming in online mode will be handled through a time-out

mechanism that will preemptively complete the job (publishing the processed alignments reflecting

the MIDI events received before the connection ended).

25 https://trompamusic.eu/deliverables/TR-D3.5-Multimodal_Music_Information_Alignment_v1

TR-D5.3-TROMPA Processing Library_v1

34

https://trompamusic.eu/deliverables/TR-D3.5-Multimodal_Music_Information_Alignment_v1

5.3.5 Multimodal Cross Linking

Multimodal Cross Linking comprises of two different pieces of software:

❖ Authority registration and linking: This software has a user interface to create and describe

web-resources and the relations between entities and resource types. For example Wikidata

will be registered as authority that provides Person Entities, Musical Work Entities and other

entities that will be stored in the CE. Links to other resources will be described like SameAs if

the same entity is linked to another resource.

❖ Web scraper: The web scraper will retrieve entity information from the in the CE stored

web-resource and finds links to other registered authorities. It will save the referenced

entities in the CE.

The user interface (Authority registration and linking) interacts with contributors and the CE. On the

other hand, the web scraper interacts between the CE and the web resources of registered

authorities. The multimodal cross linking will have use cases where the linked data can be used as

background reference or where data can be enriched for the end user. This is primarily with cases for

music scholars and music enthusiasts.

Both pieces of software will run as micro services in a cloud environment under subscription of

Trompa. The authority registration and linking software will register user input from a web-interface

and store the data in the CE. The web scraper takes data from web-resources of registered

authorities and saves the linked data in the CE.

Regarding error handling, the web service for the user interface for the authority registration

should generate error messages for the user so technical support can be used to resolve the

problems. For the web scraper, an e-mail report must be generated that will be sent to the

administrators of the application.

6. Conclusion
In this deliverable we described in detail the TROMPA Processing Library. Rather than being a single

piece of software, TROMPA Processing Library is a collection of Contributor Environment

functionalities that allow the interaction of WP3 components with the CE data, the different

software components that correspond to the various WP3 tasks, and the organization amongst

them. We presented the details of the mechanism for storing and retrieving data object in the CE,

assigning specific processing tasks for the data, and the overall software and partially hardware

organization of the different components. The proposed architecture is flexible and easy to adapt to

the project needs, as this progresses.

For the next period of the project, we plan to develop the TPL as follows:

❖ Preliminary Development (M13 - 18): By the end of this period we will test all of the

individual components of WP3 and validate the correct communication with the CE:

assignment of tasks from the CE, execution of tasks, storage of data.

❖ First Working Version (M19-M22): By the end of this period we will provide a first full

version of the TPL. This will be delivered 2 months prior to M24 and MS3, where the first

version of the working prototypes of the pilots will be delivered in order to facilitate the

development of the pilots.

❖ Incorporation of Latest WP3 Components (M23-24): TPL will incorporate the final versions

of for Task 3.3 - Audio Processing and Task 3.5 - T3.5 Alignment of musical resources.

TR-D5.3-TROMPA Processing Library_v1

35

❖ Incorporation of Final WP3 Components (M25-M30): TPL will incorporate the final versions

of for Task 3.4 - Visual Analysis of Scanned Scores and Task 3.6 - Multimodal Cross Linking

❖ Final Version (M31-M34): Final adaptations/debugging. There will be an effort to have most

of the components centralised for ensuring sustainability after the end of the project.

7. References

7.1 Written references

[1] Bogdanov, D., Wack N., Gómez E., Gulati S., Herrera P., Mayor O., et al. (2013). ESSENTIA: an

Audio Analysis Library for Music Information Retrieval. International Society for Music Information

Retrieval Conference (ISMIR'13). 493-498.

[2] Crawford, T., Badkobeh, G. and Lewis, D. (2018) Searching Page-Images of Early Music Scanned

with OMR: A Scalable Solution using Minimal Absent Words. ISMIR 2018

7.2 List of abbreviations

Partner Description

UPF University Pompeu Fabra

IMSLP International Music Score Library Project

GOLD Goldsmiths University of London

MDW University of Music and Performing Arts Vienna

CDR Centrale Discotheek Rotterdam

Abbreviation Description

TPL Trompa Processing Library

CE Contributor Environment

CEapi Contributor Environment API

UI User Interface

PCP Pitch Class Profiles

MEI Music Encoding Initiative

MAPS Matcher for Alignment of Performance and Score

TR-D5.3-TROMPA Processing Library_v1

36

GUI Graphical User Interface

OMR Optical Music Recognition

TR-D5.3-TROMPA Processing Library_v1

37

Annex A - Query the Contributor Environment
The contents of this Annex are part of the ongoing working document CE API Manual, which will be

frequently updated as the project progresses. At a later stage of the project, the CE API Manual will

be publicly available.

1. Queries

1.1 Simple query for one node

A query starts with the phrase ‘query’ and typically consists of:

❖ The name of the query (optional)

❖ Type of entity for which is queried

❖ Conditions (optional)

❖ List of properties to be included in the response

The result typically consists of json object containing:

❖ The “data” object with the result(s)

❖ The name of the query responded to

❖ The actual data, corresponding to the list of properties to be included

TR-D5.3-TROMPA Processing Library_v1

38

1.2 Simple query for multiple nodes

By passing first / offset parameters, the results can be paginated

1.3 Complex query

TR-D5.3-TROMPA Processing Library_v1

39

For properties containing nodes, the request body needs to create a deeper property list for that

node. In most cases these deeper nodes can be of multiple types. For each expected node type, an

… on [type] {} property list needs to be included. Thankfully, the CE-api interface suggests options

and validates the query in real time.

2. Mutations

Mutations are queries that add, update or remove data in the database.

2.1 Creating a node

A create mutation typically consists of:

❖ Between brackets, a list of scalar parameters that correspond to the type properties for

which the value needs to be set. Properties can also contain arrays of scalars.

❖ Between curly braces, a list of properties to be returned once the node is created

What cannot be passed as data to be created is a related node, either new or existing. The exception

are properties containing ‘datetime’ type data. The Neo4j database has a number of scalar datetime

types. As we use the Apollo library, we need to pass such a date as an object.

TR-D5.3-TROMPA Processing Library_v1

40

2.2 Updating a node

The update query is much like the Create query, with the difference that the identifier needs to be

passed along with the update parameters. Properties that are left out will not be updated. When

updating an array value, the full array needs to be passed: elements missing from the update data

will be removed.

2.3 Deleting a node

When deleting a node, only the identifier can be passed as a parameter. When a node gets deleted,

all its incoming and outgoing relations to other nodes will also be deleted. The response will contain

the data of just before the node was deleted. Running the same delete query again would yield an

empty result, as there was no more node to delete:

TR-D5.3-TROMPA Processing Library_v1

41

2.4 Add a relation between nodes (primitive types)

For each relation, which is a property containing another node, there is a dedicated mutation query.

Consult the schema to find the right relation mutation. The GraphQL interface has autosuggestion

and detects invalid queries.

The mutation create query for a relation between 2 primitive types only needs the identifiers of

both nodes as parameters, contained in ‘from’ and ‘to’ objects. It is possible to create multiple

relations of the same type between the same nodes.

2.5 Add a relation between nodes (Interfaced or Unioned types)

To create a relation that expresses a property that can contain different node types (relation to an

Interface or a Union), a number of custom queries were created. Consult the schema to find the

right relation query. Depending on the query, the ‘from’ and ‘to’ bodies require an indication of the

primitive type of the parent and target node. If the parent node type has several properties that

express relations between Interfaced or Unioned types, it is also necessary to include the ‘field’

parameter that indicates which parent property is expressed by the relation.

TR-D5.3-TROMPA Processing Library_v1

42

2.6 Remove a relation between nodes

But for the Query name, the Removal query for a relation is identical to the Create query. A Remove

query removes all the relations of the same type between the indicated nodes .

TR-D5.3-TROMPA Processing Library_v1

43

Annex B - Verovio Converter Example

An example on how to use the Verovio software as a component of the TROMPA Processing Library 26

is provided. Verovio is a fast, portable and lightweight open-source library for engraving Music

Encoding Initiative (MEI) music scores into SVG. In the this Github repository here is a working 27

example of Verovio MusicXML->MEI conversion on eligible data contained in the CE database.

26 https://www.verovio.org/index.xhtml
27 https://github.com/trompamusic/ce-digital-score-edition-component

TR-D5.3-TROMPA Processing Library_v1

44

https://www.verovio.org/index.xhtml
https://github.com/trompamusic/ce-digital-score-edition-component

