
TROMPA: Towards Richer Online Music Public-domain Archives

Deliverable 5.3

TROMPA Processing Library v2

Grant Agreement nr 770376

Project runtime May 2018 - April 2021

Document Reference TR-D5.3-TROMPA Processing Library v2

Work Package WP5 - TROMPA Contributor Environment

Deliverable Type Report

Dissemination Level PU- Public

Document due date 28 February 2021

Date of submission 28 February 2021

Leader UPF

Contact Person Aggelos Gkiokas (aggelos.gkiokas@upf.edu)

Authors Aggelos Gkiokas, Alastair Porter, Helena Cuesta, Juan Sebastian
Gomez, Lorenzo Porcaro (UPF), David Weigl (mdw)

Reviewers Werner Goebl (mdw), Nicolas Gutierrez (UPF)

TR-D5.3-TROMPA Processing Library v2

1

Executive Summary

This deliverable describes the work carried out under Task 5.3 - Multimodal Integration and is an

extension of the 1st version of deliverable D5.3 - TROMPA Processing Library (TPL). As a general

description, this deliverable provides functionalities for descriptions and syntheses of music data

coming from supported music data repositories. This comprises common access to (combinations of)

public music data contained in the Contributor Environment (CE) database regardless of content-type

and common access to WP3 algorithm processes to be run against (combinations of) this public

music data. The components delivered in this document can be summarized as follow:

❖ An extension of CE functionalities, offering a generic integration solution for

WP3-CE-Application interaction. This is also strongly related with Task 5.1 - Data

Infrastructure and the corresponding deliverable.

❖ The Multimodal Component, which offers a graphical interface to search for items in the CE

without the need to construct GraphQL queries manually.

❖ A helper library for accessing and updating data in the CE, named ce-client.

❖ The TROMPA Processing Component (TPC), which is a software for wrapping, scheduling and

executing algorithms, as well handling all the input/output communication of an algorithm

with the CE. We can say that executed algorithms are completely “agnostic” of the CE

environment. In this sense, any algorithm can be integrated within the TROMPA Processing

Component easily and can also be run in any machine; thus no explicit software/hardware

requirements are imposed.

❖ A number of algorithms integrated within the TROMPA Processing Component.

The TPL offers a communication layer between client applications, the CE, and WP3 technologies.

Each time a client application requests any type of data or metadata, this is done via TPL

functionalities which derive from:

❖ The CE infrastructure including the CE neo4j database along with the GraphQL Interface,

which provides Pilot developers rich access to the TROMPA dataset, stored as public data

references in the CE database, as well as the Extended API Functionalities, which allows for

the real-time definition, creation, completion and consumption of WP3 technology ‘jobs’ on

public music data referenced in the CE database.

❖ The Multimodal Component, which allows a Pilot user to browse (and combine) CE

references to public music data, regardless of content type. Moreover the Multimodal

Component provides a graphical interface to browse the CE data.

❖ A set of algorithms that run on specific data types.

❖ Various instances of the TROMPA Processing Component that are run on different compute

nodes and invoke different algorithms.

❖ A client application that makes algorithm invoking requests, e.g. ask to run a specific

algorithm A on an item B. In the TROMPA context this client application is any of the five

software prototypes developed to cater for TROMPA’s use cases (see deliverables of WP6).

The processing workflow for triggering a WP3 algorithm/task is as follows:

❖ Initially, an algorithm definition is given to the TPC, which converts this definition into a CE

representation, by creating the corresponding CE nodes. This definition contains information

about the algorithm such as the number and type of inputs and parameters, the command

line invocation, etc.

TR-D5.3-TROMPA Processing Library v2

2

❖ Additionally, the TPC client program creates a template query for triggering this algorithm,1

that can be used by the client application.

❖ If a given task has already processed the CE node corresponding to a particular piece of

data, the client application can retrieve and show the result immediately. Otherwise the

application can request the running of the task on a selected piece of data by submitting the

query from the previous step. This process creates a new node in the CE that corresponds to

this specific task.

❖ The TPC either polls the CE for new ‘jobs’ created, or subscribes to ‘job’ creation triggers via

a WebSocket.

❖ On reception of a new job, the TPC retrieves the necessary parameters and input files, and

validates and executes the task. While running, it updates the task status in the CE.

❖ From the client application’s perspective, in order to track the progress of the execution it

can either poll the CE regularly, or subscribe to update triggers via WebSocket.

❖ Once the TPC task is completed, the output is transferred to TPC storage (See section 3.2.5),

a reference node for the storage location is created in the CE, a result relation is added

between the task node and reference node, and the task status is set to ‘complete’.

❖ The client application receives the ‘complete’ update (by polling or subscription), retrieves

the result reference and can create additional relations between the result and other CE

nodes for enriching, semantic interlinking and provenance tracking purposes.

The proposed workflow provides the flexibility of running algorithms ‘on demand’, i.e. running a

specific algorithm on a specific data item when requested by the use cases, as well as triggering

specific algorithms when new nodes of certain types are added in the CE (as will be described in

section 3.3.3).

The CE database contains references to public online musical data in many different formats. The

Multimodal Component (MMC) assists developers to retrieve that assorted data and present it to

users in a comprehensive way. To this end, the Multimodal Component offers ‘shortcut’ access to CE

functionalities and example UI components that give users access to these functionalities and enable

them to consume the rich TROMPA data set. Currently, the Multimodal Component consists of a

React component that implements search functionality on CE database content through the GraphQL

interface. A client application developer can include this component and use (parts of) its code and

UI elements where they fit use-case-specific functionalities. The React component can also serve as a

working example for developers to build use-case-specific implementations of the same GraphQL

functionalities or to use another technology stack.

In order to allow developers to interact with the CE more easily, we wrote the Python library

trompace-client to help generate and make requests. The library contains functionality to generate

GraphQL mutations to create and modify objects for the main data types that are used in TROMPA

and join objects together using relations, and functionality to generate GraphQL queries to retrieve

data from the CE. It also contains helper methods to perform HTTP requests to the CE. A client

package provides higher-level methods to perform tasks using a single function call.

The TROMPA Processing Component is a Python open source library that is designed in such a

way that can be run in multiple instances on different machines, making it scalable and robust. Each

application/algorithm is represented by a configuration file that contains all the relative information

about the algorithm (e.g. inputs, outputs, metadata as creator, link to source code etc) accompanied

by a Docker image that contains the program hosting the algorithm along with the respective

1 RequestControlAction mutation. See Deliverable D2.3 - Technical Requirements and Integration

TR-D5.3-TROMPA Processing Library v2

3

software dependencies. Each TPC instance is associated with a set of algorithms. The main

component of the TPL is the Scheduler. The Scheduler has three distinct functionalities:

❖ It creates all the necessary nodes in the CE in order to represent each algorithm

❖ It continuously polls the CE for new jobs.

❖ It launches the individual jobs in different processes and handles job prioritisation and load

balancing of the TPC.

Once new tasks are requested, for each polling iteration the scheduler selects which jobs will be

executed on this iteration based on their priority , updates the information on the CE that these jobs

are already assigned and creates a new process for each job. Once a job is finished, the result is

stored in the TPC storage, and a node that refers to this item is created in the CE.

Apart from the mechanism of an “on demand” execution of tasks as described, we provide an

automatic triggering mechanism (see section 3.3.3). This mechanism associates each node type of

the CE with a set of predefined algorithms. Every time a new node of a specific file type is added in

the CE, then TPC creates the corresponding requests. These requests are then handled by the TPC in

the manner described above.

For defining an algorithm one has to provide a configuration file. Each algorithm must be

packaged as a Docker image. This has the advantage that TPC is agnostic of the software

requirements of the algorithms and can be run on any computer / operating system.

There are two ways of running tasks: on demand, and automated triggering. On demand task

launching, described in section 2.2.3, is where a client application requests a corresponding job for a

specific node in the CE. However there is the need for automatically processing specific item types

when they are added in the CE. To do so, TPC implements an automated triggering by acting as a

client program of itself. It creates all the job requests as being a client program; then these jobs are

handled by the TPL as all other job requests coming from the user pilots.

TPL supports multiprocessing, i.e. running more than one task at a time. Each TPC instance has a

maximum number of processes that can be run simultaneously which is related to the hardware

capabilities of the computer running this TPC instance. We consider three levels of task priorities,

namely low, medium and high. TPC has a queuing system that ensures that all priority level tasks can

be run simultaneously and to avoid the case where low priority tasks occupy all processes, thus not

allowing the quick execution of high priority tasks.

Regarding data privacy, TPC is able to store data privately within user-controlled Solid Pods TPC

also contains capabilities for encrypting data files and URIs that may reveal personal information.

There are two types of algorithms that are run under the context of TPC. The first is a certain

collection of algorithms that are run on certain types of the data in the CE, as for example extract the

tempo of an audio file or detect its emotion, convert a scanned image to MEI file, or to assess the

performance of a choir singer. These algorithms serve as processes to use cases or other application

contexts (e.g. other tools). The second consists of processes related more to the curation of the data

in the CE, as for example data importers from external repositories. In the following table we

summarize the processes of the two categories.

TR-D5.3-TROMPA Processing Library v2

4

Algorithm / tool Description Use case / application
context

Algorithms

Extraction of
Baseline Features

It comprises a set of baseline audio descriptor
algorithms that are run on audio files.

CE enrichment

Rhythm
descriptors

It contains algorithms for the rhythm description
of audio files as well as a human-in-the-loop
method for annotating beats

CE enrichment,
Annotator tool

Active learning

for emotion

recognition

Active learning for music emotion recognition is to

allow the classification models to improve with

new annotations from particular users.

Music enthusiasts

Emotion-based

Music

Recommendation

The recommended tracks are provided analyzing

previous users’ annotations, where tracks are

listenable through a player presenting additionally

a short explanation of part of the features used in

the MER models.

Music enthusiasts

Singing

Performance

Assessment

Uses information from the piece's score and pitch

descriptors from the actual performance to

calculate the average deviation of the singers'

pitch from the reference

Choirs use case

Performance to

score alignment

It is used to align MIDI piano performances

recorded by users of D6.5 (Working prototype for

instrumental players) with MEI score encodings.

Piano players

Image to MEI

conversion

Detects music measure from a score image as well

as other symbols (systems, pauses etc) and creates

a MEI file encoding that information.

Orchestras use case

Data Importers

IMSL Importer We import metadata for composers,works, score
images, and score encodings from imslp.org.

Specialised importer, all

use cases

CPDL Importer We import metadata for composers, works, and

score encodings from cpdl.org.

Specialised importer,

singers use case

Muziekweb

Importer

For each track in the Music Enthusiasts use case,

we import an AudioObject which is linked to a

Specialised importer,

music enthusiasts use

case

TR-D5.3-TROMPA Processing Library v2

5

MusicComposition and one or several Persons to

the CE

GitHub MEI
importer

Importer for MEI score encodings generated

during the TROMPA project, stored in the

trompamusc-encodings GitHub organisation. This

includes a number of transcriptions of Beethoven

and other piano works for seeding an initial

repertoire for the working prototype for

instrumental players

instrumental players

Humdrum scores
importer

Another source of scores encoded in the

Humdrum format is used in the working prototype

for music scholars

music scholars

Data importer This importer allows anyone in the consortium to

import data into the CE from one of the supported

sources. The algorithm takes as input a data source

(e.g. MusicBrainz, Wikidata, IMSLP), and a specific

identifier for an item in that data source.

General data importer,

all use cases

IMSLP MusicXML
file

Identifies the MusicXML file inside a zip archive of

scores available on IMSLP.

Data importer fix

MusicXML/Humd
rum to MEI
converter

Converts MusicXML and Humdrum scores that

have been imported to the CE to MEI using

Verovio.

All use cases

TR-D5.3-TROMPA Processing Library v2

6

Version Log

Date Description

v0.1 10 February 2021 Initial version submitted for internal review

v0.2 23 February 2021 Revised version after internal review

v0.3 27 February 2021 Minor changes, formatting etc

v1.0 28 February 2021 Final version submitted to EU

TR-D5.3-TROMPA Processing Library v2

7

Table of Contents

Table of Contents 8

1. Introduction 10

1.1 Scope 10

1.2 Relation to the 1st version and document structure 10

2. Infrastructure and Workflow 11

2.1 Overview 11

2.2 Algorithm definition mechanism 13

2.2.1 Data Model for WP3 Processes 13

2.2.2 Algorithm Registration 14

2.2.3 Algorithm Invoking Mechanism 15

2.3 The Multimodal Component 16

2.3.1 Overview 16

2.3.2 Communication with the Use-Case Client Applications 16

2.3.3 A Graphical Interface for Accessing Data 16

2.4 The Contributor Environment Client 20

3.The TROMPA Processing Component 20

3.1. Overview 20

3.2 Representing an Algorithm 22

3.2.1 Configuration file 22

3.2.2 Docker image 23

3.2.3 Passing parameters and variables 23

3.2.5 The TPC storage 24

3.2.6 The TPC client program 24

3.3 Running Tasks 24

3.3.1 On demand running and automated triggering 24

3.3.2 Job Queuing, multi-processing and error handling 24

3.3.2.1 Task Priorities 25

3.3.2.2 Multiprocessing and queuing 25

3.3.2.3 Error Handling and Recovery 26

3.3.3 Using TPC out-of-the-box 26

3.4 Data Privacy 27

3.4.1 Access of data stored in Solid Pods 27

3.4.2 Encryption 27

4. Implementation 28

4.1 Algorithms encapsulated and relation to the use cases 30

4.1.1 - Extraction of Audio Descriptors 30

TR-D5.3-TROMPA Processing Library v2

8

4.1.2 - Rhythm Descriptors 30

4.1.3 - Active learning for emotion recognition 31

4.1.4 - Emotion-based Music Recommendation 32

4.1.5 - Singing Performance Assessment 33

4.1.6 - Score Alignment 34

4.1.7 - Visual Analysis of Scores 35

4.3 Automated metadata import 35

4.3.1 - Specialised importers 36

4.3.2 - TPC algorithms supporting data import 37

4.4 Implementation considerations 37

5. Conclusion 37

5. References 38

5.1 Written references 38

5.2 List of abbreviations 38

TR-D5.3-TROMPA Processing Library v2

9

1. Introduction

1.1 Scope

This deliverable describes the work carried out under Task 5.3 - Multimodal Integration and is an

extension of the 1st version of deliverable D5.3 - TROMPA Processing Library (TPL). This deliverable2

provides functionalities for descriptions and syntheses of music data coming from supported music

data repositories. This comprises common access to (combinations of) public music data contained in

the Contributor Environment (CE) database regardless of content-type and common access to WP3

algorithm processes to be run against (combinations of) this public music data. The components

delivered in this document can be summarized as follow:

❖ An extension of CE functionalities, offering a generic integration solution for

WP3-CE-Application interaction. This is also strongly related with Task 5.1 - Data

Infrastructure and the corresponding deliverable.3

❖ The Multimodal Component, which offers a graphical interface to search for items in the CE

without the need to construct GraphQL queries manually.

❖ A helper library for accessing and updating data in the CE, named trompace-client.

❖ The TROMPA Processing Component (TPC), which is a software for wrapping, scheduling and

executing algorithms, as well handling all the input/output communication of an algorithm

with the CE. We can say that executed algorithms are completely “agnostic” of the CE

environment. In this sense, any algorithm can be integrated within the TROMPA Processing

Component easily and can also be run in any machine; thus no explicit software/hardware

requirements are imposed.

❖ A number of algorithms integrated within the TROMPA Processing Component.

1.2 Relation to the 1st version and document structure

This deliverable is the second and final version, it is chosen to be self-contained. Thus, it is an

extension of the first version and contains overlapping content with it. The difference between the

two versions indicate the evolution of the tool from M12 (1st version) and M34 (2nd version) in

order to meet the requirements imposed by the client applications as well as the data modelling in

the CE. Section 2 overlaps significantly with the 1st version of the deliverable and describes the

extended CE functionalities for the support of algorithm invoking, the Multimodal Component as

well as the new section (2.4) on the CE client (trompace-client) component. Section 3 is the main

contribution of this deliverable, which describes the TROMPA Processing Component in detail: all the

mechanisms needed to define, configure, execute algorithms, and handle all the communication

with the CE. Section 4 presents the deployment aspects of the TPC; which technologies are

integrated within the TPC and which use case’s client applications use which of these technologies,

and hardware considerations.

3 https://trompamusic.eu/deliverables/TR-D5.1-Data_Infrastructure_v2.pdf

2 https://trompamusic.eu/deliverables/TR-D5.3-TROMPA_Processing_Library_v1.pdf

TR-D5.3-TROMPA Processing Library v2

10

https://trompamusic.eu/deliverables/TR-D5.1-Data_Infrastructure_v2.pdf
https://trompamusic.eu/deliverables/TR-D5.3-TROMPA_Processing_Library_v1.pdf

2. Infrastructure and Workflow

2.1 Overview

The TROMPA Processing Library offers a communication layer between client applications, the CE,

and WP3 technologies. An overview of the TPL workflow is shown in Figure 2.1. Each time a client

application requests any type of data or metadata, this is done via TPL functionalities which derive

from:

❖ The TROMPA data infrastructure (detailed in Deliverable 5.1) including the CE neo4j

database along with the GraphQL Interface, which provides Pilot developers rich access to

the TROMPA dataset, stored as public data references in the CE database, as well as the

Extended API Functionalities, which allows for the real-time definition, creation, completion

and consumption of WP3 technology ‘jobs’ on public music data referenced in the CE

database.

❖ A decentralised contribution layer in the form of Solid Pods, intended for the storage of

private, user-generated content.

❖ The Multimodal Component, which allows TROMPA users to browse (and combine) CE

references to public music data, regardless of content type. The Multimodal Component also

provides a graphical interface to browse the CE data.

❖ A set of algorithms that run on specific data types that are facilitated by the TROMPA use

cases. Apart from this set of algorithms, more algorithms can be added at any time.

❖ Various instances of the TROMPA Processing Component that are run on different compute

nodes and invoke different algorithms.

❖ A client application that makes algorithm invoking requests, e.g. ask to run a specific

algorithm A on an item B. In the TROMPA context this client application is any of the five

software prototypes developed to cater for TROMPA’s use cases (see deliverables of WP6).

TR-D5.3-TROMPA Processing Library v2

11

Figure 2.1 TROMPA Processing Library Workflow

The processing workflow for triggering a WP3 algorithm/task is as follows:

❖ Initially, an algorithm definition is given to the TPC, which converts this definition into a CE

representation, by creating the corresponding CE nodes. This definition contains information

about the algorithm such as the number and type of inputs and parameters, the command

line invocation, etc.

❖ Additionally, the TPC client program creates a template query for triggering this algorithm,4

that can be used by the client application.

❖ If a given task has already processed the CE node corresponding to a particular piece of

data, the client application can retrieve and show the result immediately. Otherwise the

application can request the running of the task on a selected piece of data by submitting the

query from the previous step. This process creates a new node in the CE that corresponds to

this specific task.

❖ The TPC either polls the CE for new ‘jobs’ created, or subscribes to ‘job’ creation triggers via

a WebSocket.

4 RequestControlAction mutation. See Deliverable D2.3 - Technical Requirements and Integration

TR-D5.3-TROMPA Processing Library v2

12

❖ On reception of a new job, the TPC retrieves the necessary parameters and input files, and

validates and executes the task. While running, it updates the task status in the CE.

❖ From the client application’s perspective, in order to track the progress of the execution it

can either poll the CE regularly, or subscribe to update triggers via WebSocket.

❖ Once the TPC task is completed, the output is transferred to TPC storage (See section 3.2.5),

a reference node for the storage location is created in the CE, a result relation is added

between the task node and reference node, and the task status is set to ‘complete’.

❖ The client application receives the ‘complete’ update (by polling or subscription), retrieves

the result reference and can create additional relations between the result and other CE

nodes for enriching, semantic interlinking and provenance tracking purposes.

The proposed workflow provides the flexibility of running algorithms ‘on demand’, i.e. running a

specific algorithm on a specific data item when requested by a client application, as well as triggering

specific algorithms when new nodes of certain types are added in the CE (as will be described in

section 3.3.3).

2.2 Algorithm definition mechanism

This section provides details on the mechanism by which TPC can communicate with the client

applications through the Contributor Environment. At its most basic, this integration mechanism

offers automation for the following process:

❖ A user of a client application chooses target content, referenced in the CE database

❖ The application creates a job to run a process on this content

❖ TPC Process picks up job

❖ TPC Process executes job on target content, creating and storing a result

❖ TPC Process writes reference to result in CE database

❖ User Pilot picks up result

❖ User Pilot user consumes result

In the following subsections we will describe the technical details of this mechanism.

2.2.1 Data Model for WP3 Processes

Process jobs are maintained as nodes in the CE. A subscription or a polling mechanism enables the5

TPC to be actively updated on job creation and status updates in real time. This way, the CE becomes

the communication layer between the TPC and the client applications. This offers a standardized

solution for integration and ensures that WP3-produced data through the TPC is referenced and gets

interlinked with the larger TROMPA dataset. The generic TPC-use case interaction solution is based

on a schema.org compatible data model that can be broken down into three parts:6

● Template Nodes: Maintained by TPC and used by client applications. The Template Nodes

represent generic algorithmic processes, e.g. “the extraction of Pitch Class Profiles (PCP)

features from an audio recording”.

● Instance Nodes: Created by client applications and maintained by the CE. Instance Nodes

correspond to specific tasks requested by User Pilots, e.g. “the extraction of PCP features

from the audio recording X”.

6 https://schema.org/

5 https://graphql.org/blog/subscriptions-in-graphql-and-relay/

TR-D5.3-TROMPA Processing Library v2

13

https://schema.org/
https://graphql.org/blog/subscriptions-in-graphql-and-relay/

● Public Nodes: - They represent the (public) content on which the TPC is run (e.g. the audio

recording X) and the corresponding results (e.g. the PCP features).

The job-running infrastructure uses the following CE node types:

❖ SoftwareApplication: Every software tool is represented by a SoftwareApplication node in7

the database.

❖ EntryPoint: Each of the available algorithmic processes run by a software application is

represented as an EntryPoint node. This entry point enables the user pilot to request,8

monitor and control the running of a process. The EntryPoint needs to be related to the

SoftwareApplication through the actionApplication property.9

❖ ControlAction: The ControlAction is the `template` for a user’s request for a certain process10

to be run and is related to the EntryPoint through the potentialAction property. It is like a

template for a potential job that needs to be carried out by the process represented by the

EntryPoint.

In order to pass the required parameters and input to an algorithm, TPC uses the following CE node

types:

❖ Property: any content available in the CE, like an audio file the user needs the process to act

on, can be specified by adding a Property and relating this to the ControlAction through11

the object property.12

❖ PropertyValueSpecification: These nodes are used to represent the parameters of an

algorithm. Thus any number of required or non-required scalar arguments (numbers, strings

etc.) can be set up by adding PropertyValueSpecification nodes and relating them to the13

ControlAction through the same object property.

Together, these EntryPoint, ControlAction, PropertyValueSpecification and Property nodes

determine what the client application will interact with when requesting and controlling a process.

This model provides enough information to dynamically generate a process-specific user interface. A

user requesting a job through this interface will instantiate the model as a job request which can

then be picked up, followed and controlled by the user and by the TPC.

2.2.2 Algorithm Registration

Following the data model presented in the previous section, each algorithm must register itself to

the CE. The procedure to do so is summarized as:

❖ Create a SoftwareApplication node in the CE: This node corresponds to a software package

that hosts a specific algorithm. A SoftwareApplication can have many algorithms related to it.

❖ Create an EntryPoint node in the CE: The entry point corresponds to a specific

algorithm/method to be run.

13 https://schema.org/PropertyValueSpecification

12 https://schema.org/object

11 https://meta.schema.org/Property

10 https://schema.org/ControlAction

9 https://schema.org/actionApplication

8 https://schema.org/EntryPoint

7 https://schema.org/SoftwareApplication

TR-D5.3-TROMPA Processing Library v2

14

https://schema.org/PropertyValueSpecification
https://schema.org/object
https://meta.schema.org/Property
https://schema.org/ControlAction
https://schema.org/actionApplication
https://schema.org/EntryPoint
https://schema.org/SoftwareApplication

❖ Create an actionApplication relation between SoftwareApplication and EntryPoint: This

actions defines that this EntryPoint is a part of the SoftwareApplication node.

❖ Create a ControlAction template node: This ControlAction node will be the model for the

‘job’ created for a specific algorithm process request. Each request will result in a copy of

this ControlAction node to be created (instantiated) which will then represent the ‘job

instance’ that can be acted on and followed.

❖ Create potentialAction relation between EntryPoint and (template) ControlAction: Relates

the ControlAction template to the specific EntryPoint.

❖ Create Property template node: Corresponds to existing nodes in the CE database, e.g., to

reference a content file stored in a public repository. These will be the inputs to the WP3

algorithms.

❖ Create PropertyValueSpecification: Corresponds to a scalar parameter (string, number,

boolean flag) that needs to be given by the user to configure the algorithm process.

❖ Create object relations between ControlAction and Property/PropertyValueSpecification

template nodes, respectively.

2.2.3 Algorithm Invoking Mechanism

Following the data model presented previously, each algorithm is invoked by the client applications

using the following pipeline:

❖ The client application requests a new job by using the trompace-client or TPC-client to

execute the RequestControlAction graphql mutation. With this mutation a new

ControlAction node is created in the CE. This mutation provides all the necessary

information about the task to be run: the CE translates this request by creating a set of nodes

on the basis of the EntryPoint/ControlAction template and subsequently responds with the

thus created ControlAction, including its unique identifier. It also defines the values for the

Property and PropertyValueSpecification which are the input and parameters of the task to

be run.The client application can then subscribe to the CE using the unique identifier and

receive a notification each time the corresponding ControlAction is updated.

❖ The new ControlAction node (which is an instance node as defined in Section 2.2.1) is linked

with a derivedFrom relation to the template node.

❖ The TPC can frequently poll the CE by getting all nodes with a derivedFrom relation to the

template ControlAction node or by a subscription mechanism that opens a WebSocket to the

CE that receives a message every time a new instance of the template node is created.

➢ Subscribe to the CE on RequestControlAction requests on a specific EntryPoint,

through the WebSocket: This functionality offers the possibility to handle user

requests for algorithms in real-time.

➢ Frequently check for tasks in the CE: It is possible to query for ControlActions

created on the basis of a certain EntryPoint. In this way, the software developed

under WP3 can check if new tasks have to be run at convenient times or intervals.

This functionality offers WP3 software to handle user requests for algorithms in

batches.

❖ Once the TPC receives a new node (job), it reads all the inputs and parameters from the

Property and PropertyValueSpecification fields of the ControlAction instance and executes

the algorithm.

TR-D5.3-TROMPA Processing Library v2

15

2.3 The Multimodal Component

2.3.1 Overview

The CE database contains references to public online musical data in many different formats. The

Multimodal Component (MMC) assists developers to retrieve that assorted data and present it to

users in a comprehensive way.

To this end, the Multimodal Component offers ‘shortcut’ access to CE GraphQL functionalities14

and example UI components that give users access to these functionalities and enable them to

consume the rich TROMPA data set.

2.3.2 Communication with the Use-Case Client Applications

The Multimodal Component consists of a React component that implements search functionality on

CE database content through the GraphQL interface. An application developer can include this React

component and use (parts of) its code and UI elements where they fit use-case-specific

functionalities. The React component can also serve as a working example for developers to build

use-case-specific implementations on the same GraphQL functionalities and as a reference for future

implementations in different programming languages.

2.3.3 A Graphical Interface for Accessing Data

The Multimodal Component offers a GUI to search the TROMPA dataset as contained in the CE

database, implementing the mockups as researched and produced in Task 5.3 - Multimodal

Integration of Music Data. Figure 2.1 presents the output of the query of ‘Gustav Mahler’ to the CE

database. On the left side we can see the different categories of the items matching the query. For

each result of the query additional information is provided, as for example the source of the item

(e.g. wikidata, musicbrainz), and links to related items. For instance a composer is linked to her/his

compositions, and the compositions are linked to scores and performances. The end user can get

deeper into the structure of the data, for example by filtering only by Person entity type, as shown in

Figure 2.2. Figure 2.3 shows a screenshot of a demo that is available online . The demo application15

will be updated in the run-up to the final evaluations in M36 to reflect the latest developments of the

Multimodal Component search functionalities. The GitHub repository of the MMC demo application

provides code examples for the most common user stories plus inlined documentation on query

construction.

15 https://multimodal.trompamusic.eu/

14 https://github.com/trompamusic/trompa-multimodal-component

TR-D5.3-TROMPA Processing Library v2

16

https://multimodal.trompamusic.eu/

Figure 2.1 MMC Search mockup - initial search concept

TR-D5.3-TROMPA Processing Library v2

17

Figure 2.2 MMC Search mockup - refined search on People

TR-D5.3-TROMPA Processing Library v2

18

Figure 2.3 MMC Search implementation - unrefined search on music compositions

TR-D5.3-TROMPA Processing Library v2

19

2.4 The Contributor Environment Client

In order to allow developers to interact with the CE more easily, we implemented a Python library to

help generate and make requests . The trompace-client is available on the Python Package Index16

(pypi) , making it installable by anyone using the standard Python dependency management tools.17

The library is licensed under the Apache 2.0 software license, allowing it to be widely used in both

Open Source and commercial software packages.

The library contains functionality to generate GraphQL mutations to create and modify objects for

the main data types that are used in TROMPA and join objects together using relations (the

trompace.mutations package), and functionality to generate GraphQL queries to retrieve data from

the CE (the trompace.queries package). It also contains helper methods to perform HTTP requests

to the CE. Authentication credentials can be set in a configuration file, and the library will

automatically use these credentials where necessary in the background when making mutations,

without the developer needing to manage them manually. A client package (trompace.client)

provides higher-level methods to perform tasks using a single function call. For example, when

creating a list of items, it is first necessary to create an ItemList object, then a ListItem for each

element. Each ListItem must be linked to the ItemList with another mutation, and optionally linked to

an existing object in the CE with yet another mutation. The client interface provides a single Python

method which generates all necessary mutations and performs the necessary HTTP requests to the

CE.

Documentation for the trompace-client package is published on readthedocs , an18

industry-standard resource for publishing documentation for open source projects. The

documentation includes standard Python documentation for the available methods, and also

includes a description of each type of object (entity) that can be created in the CE, along with a list of

the properties of each object and a short description of the expected values associated with each

property. A graphical representation of entities and their semantic relationships is included,

generated using standard semantic web tools.

3.The TROMPA Processing Component

3.1. Overview

The TROMPA Processing Component is a Python open source library . It is designed to be run in19

multiple instances on different machines, making it scalable and robust. Figure 3.1 presents the

overview of a specific instance of a TPC, i.e. a TPC that runs on a single machine. Each

application/algorithm is represented by a configuration file that contains all the relative information

about the algorithm (i.e. inputs, outputs, metadata as creator, link to source code, etc.) accompanied

by a Docker image that contains the program hosting the algorithm along with the respective

software dependencies. Each TPC instance is associated with a set of algorithms. Note that an

19 https://github.com/trompamusic/tpc

18 https://trompace-client.readthedocs.io

17 https://pypi.org/project/trompace-client

16 https://github.com/trompamusic/trompace-client

TR-D5.3-TROMPA Processing Library v2

20

https://github.com/trompamusic/tpc
https://trompace-client.readthedocs.io
https://pypi.org/project/trompace-client
https://github.com/trompamusic/trompace-client

algorithm can be run on multiple TPC instances. The main component of the TPC is the Scheduler.

The Scheduler has three distinct functionalities:

❖ It creates the CE nodes necessary to represent each algorithm by following the procedure

described in Section 2.2

❖ It continuously polls the CE for new jobs.

❖ It launches the individual jobs in different processes and handles job prioritisation and load

balancing of the TPC.

Once a new job is requested (as for example a request by a client application) using the mechanism

described in 2.2.3, a new node is created in the CE that corresponds to this job. The scheduler

frequently polls the CE for new tasks, given the algorithms assigned to this TPC instance. The reason

for using polling instead of the subscription mechanism described in Section 2.2.3, is that we ensure

that:

❖ We minimize the chance of a “lost” task. In the worst case where TPC is not functioning

when the job request is made, this job will be executed once the TPC is up.

❖ All the jobs will be processed irrespective of available computational resources.

❖ Using the CE in order to store which jobs are assigned and which are still pending makes it

easier to distribute the tasks to more than one computer.

Using polling instead of subscription, makes it a lot easier to distribute tasks in more than one

computer. Consider the following in the case of using the subscription mechanism on two different

computers for the same task. Upon a new task request, the two TPC instances will receive the same

message almost at the same time. Handling this would require a mechanism to make the two

computers communicate, otherwise they would both run the same task. Polling partially solves this,

since it's less probable that two computers receive the same node at the same time, since the

control action status is instantly updated to "active", and thus this job won't be received by another

computer. The fact that we can run more than one TPC instances for the same task, has two major

advantages:

❖ The fact that any job can be run on any TPC instance, makes it linearly scalable.

❖ Moreover it allows to have potentially “specialized” TPC instances, with respect to hardware,

e.g. have a computer with GPUs for specific tasks.

When new tasks are requested, for each polling iteration the scheduler selects which jobs will be

executed on this iteration based on their priority (see section 3.3.4), updates the information on the

CE that these jobs are now assigned, and creates a new process for each job. Once a job is finished,

the result is stored in the TPC storage, and a node that refers to this item is created in the CE.

Apart from the mechanism of an “on-demand” execution of tasks as described, we provide an

automatic triggering mechanism (see section 3.3.3). This mechanism associates each node type of

the CE with a set of predefined algorithms. Every time a new node of a specific file type is added in

the CE, then TPC creates requests to trigger the corresponding algorithms. These requests are then

handled by the TPC as described above.

Each TPC instance is set up using a configuration file . This configuration file contains information20

about the algorithms to be run, connection information to the CE and to the TPC Storage (see section

3.2.5), information about local paths to be used, etc.

20 Example available at https://github.com/trompamusic/tpc/blob/dev/config/tpc.ini

TR-D5.3-TROMPA Processing Library v2

21

https://github.com/trompamusic/tpc/blob/dev/config/tpc.ini

Figure 3.1. The TROMPA Processing Component organization

3.2 Representing an Algorithm

3.2.1 Configuration file

For defining an algorithm one has to provide a configuration file in an ini format containing the21

following fields. This configuration file defines the nodes that need to be created in order to

represent the algorithm in the CE (section 2.2)

❖ An Application section, which contains general information about the application such as its

name, its creator, and a link to the source code.

21 https://github.com/trompamusic/tpl/blob/main/config/application_example.ini

TR-D5.3-TROMPA Processing Library v2

22

https://github.com/trompamusic/tpl/blob/main/config/application_example.ini

❖ A ControlAction section which apart from general description and naming information as in

the application field, contains the number of inputs, parameters, and outputs of the

algorithm.

❖ An EntryPoint section which apart from general description and naming information as in

the application field, contains information about the Docker image containing the algorithm

executable and the command line invocation required to run the algorithm.

One section for each input, parameter and output of the software to be run (see section

3.3.3). This field provides a general description of the parameter (i.e. name, description) as

well as how this parameter is defined in the corresponding command line invocation for the

EntryPoint.

3.2.2 Docker image

Each algorithm must be packaged as a Docker image. This has the advantage that TPC is agnostic of

the software requirements of the algorithms, which can be run in any computer / operating system.

3.2.3 Passing parameters and variables

TPL has three different types of parameters to be passed to an algorithm: inputs, parameters and

outputs. Any algorithm can operate on an arbitrary number of inputs, parameters and outputs.

❖ TPC Inputs: TPC inputs represent objects (e.g. an audio file, a music score) that are to be

processed by the algorithm. These inputs correspond to data that is already referenced by

nodes stored in the CE. Consequently, the value of the input parameter is the identifier of

the corresponding node in the CE. The CE types that correspond to TPC inputs are

DigitalDocument, AudioObject or MediaObject. For these types of objects, an algorithm can

take as input the source file of the node (e.g. the actual audio file in the case of AudioObject)

as well as other fields of this node (e.g. the identifier of this node).

❖ TPC Outputs: TPC outputs correspond to the result of the specific algorithm. This result is

usually a file with some numerical information, that can be stored in either binary format or

in text format. All TPC outputs represent nodes to the CE, with a link to the location of the

result. These nodes are created by the TPL after the execution of the algorithm. As in the

case of TPC inputs, the outputs can be DigitalDocument, AudioObject or MediaObject

nodes.

❖ TPC Parameters: TPC parameters correspond to any input to the algorithm that does not

correspond to a node to the CE (either input or output). These parameters are usually some

scalar values that represent properties/parameters to an algorithm, such as number of

iterations to compute something, threshold values, flags etc. Apart from this usage however,

the parameters offer a flexible way to add to an algorithm inputs that are not in the CE. For

example, if one wants an algorithm to process a file outside the CE, the URI of the file can be

passed as a parameter (see section 3.2.5).

❖ TPC Storage: In many cases it is necessary for an algorithm to refer to a data point that is not

yet created. For example, the performance-to-MEI alignment workflow needs to know the

URI of the performed MEI file to be created. To support this functionality, it is possible to

refer to the TPC storage by a symbolic variable.

TR-D5.3-TROMPA Processing Library v2

23

3.2.5 The TPC storage

In the TPC instance running at MTG, we provide a minio server to store generated content. Minio is22

a data store server which provides an Amazon S3-compatible API for storing files. By default, the TPC

stores generated files in this server. Algorithms can also provide S3 credentials to upload files to a

storage service specific to that algorithm. Additionally, TPC has the possibility to store data in a Solid

Pod in the case of private data (see section 3.4).

3.2.6 The TPC client program

Given a registered application to the TPC, we provide an additional program called the TPCclient .23

This program is a helper software to be used by client application developers that provides template

queries needed to execute a specific algorithm. Specifically, the TPC client provides the following:

❖ Creates the control action request given specific parameters/inputs of the algorithm

❖ Creates the query needed to obtain the result(s) node of a specific task.

❖ Optionally executes the above queries

3.3 Running Tasks

3.3.1 On demand running and automated triggering

There are two ways of running tasks, on demand and automated triggering. On demand task

launching refers to the way to launch tasks as described in section 2.2.3, where a client application

requests a corresponding job for a specific node in the CE.

However there is the need for automatically processing specific item types when they are added

in the CE. For example we might want to extract some certain audio features each time a new audio

object is inserted in the CE. Using all the CE and TPC capabilities that we have described, this is quite

straightforward:

❖ First, we must define which algorithms should be run for each file/node type. This is set up

easily using a configuration file.

❖ TPC subscribes to these node types; this means that for each node type TPC establishes a

WebSocket connection with the CE. Each time a new node is created of that specific node

type, TPC receives a message that a new node is created along with all the necessary

information (e.g. identifier).

❖ Whenever a new message is created, TPC makes job requests as depicted in the

configuration file for this node with a normal priority (see section 3.3.2.1).

In this way TPC acts as a client program of itself. It creates all the job requests as being a client

program; then these jobs are handled by the TPC as all other job requests coming from the user

pilots.

3.3.2 Job Queuing, multi-processing and error handling

In the initial version of the TPC, a websocket connection with the CE was opened for each subscribed

application. Each time a pilot was demanding a specific action to be run by creating a control action

23 TPCclient is contained in the TPC repository as a submode of the TPC.

22 https://min.io/

TR-D5.3-TROMPA Processing Library v2

24

https://min.io/

request, the TPC instantly received the request, translated it into a job object, and placed it on the

processing stack. As mentioned in Section 3.1, this approach had several drawbacks:

❖ In the case where the TPC was crashed or not running, all these requests would be lost.

❖ It would require a threading/processing mechanism able to handle arbitrary many requests

at a time. Such an approach would be more unstable: in the extreme case for an arbitrary

large number of concurrent requests, the TPC should have a mechanism to control them, as

well as create a restoring mechanism.

❖ It would make the deployment on more than one computer difficult. Although this could be

partially achieved by assigning specific tasks to specific machines, we might still require to

have a single task running on more than a computer.

Thus we chose to use frequent polling of the CE to get all the pending jobs. This allows to keep track

easier which jobs are already started to run and which are queued, since this information is explicitly

contained in the CE.

Before describing the job queuing process of the TPC, we define the task priorities and the

processing units assigned to each priority level:

3.3.2.1 Task Priorities

We consider three levels of task priorities, namely low, medium and high. Whenever a task is

triggered the client application can select the priority for this specific job. However it can be also

defined manually in the application configuration file (see section 3.2).

➢ High priority tasks are required to be run almost real-time and mainly correspond to

on-demand tasks by the client applications. These tasks are the first to be run when a batch

of tasks is processed.

➢ Medium priority tasks: these tasks are by default the ones created by the automated

triggering described in section 3.3.1. The intuition behind this choice is that when new data

is added on the CE, this is usually not done during the use of the client application, but more

as a batch process (for example the importer tools, section 4.2). Thus there is no need for

executing certain algorithms on this data with a high priority. However, in the case that a

new object is added in the CE by an application that needs the immediate processing of this

object by an algorithm, a high priority can be set to this task by the pilot.

➢ Low priority tasks: these are tasks that are related more to the update of the CE (e.g. data

importer tools) as well as curation processes of the CE. Such tasks could be methods that

verify links in the CE, check for duplicates, etc.

3.3.2.2 Multiprocessing and queuing

TPC supports multiprocessing, i.e. running more than one task at a time. Each TPC instance has a

maximum number of processes that can be run simultaneously which is related to the hardware

capabilities of the computer running this TPC instance. Each priority task level has a dedicated

number of processes. This is done in order to ensure that all priority level tasks can be run

simultaneously and to avoid the case where low priority tasks occupy all processes, thus not allowing

the quick execution of high priority tasks. Thus, the queuing system of the TPL for one polling

iteration can be summarized as follows:

❖ TPC polls the CE and gets all the available tasks to be run.

❖ It uses all high priority available processes to run high priority tasks.

TR-D5.3-TROMPA Processing Library v2

25

❖ It uses all medium priority available processes to run medium priority tasks.

❖ It uses all low priority available processes to run low priority tasks.

❖ If there are remaining high priority tasks and available computing slots for medium/low

priority tasks, these are used to run these high priority tasks, leaving only one computing slot

empty for each of the medium/low priority tasks. For example if there are N and K available

processes for medium/low priority tasks, the N-1 and K-1 will be used to run high priority

tasks (for this polling iteration)

❖ The same procedure is repeated for the medium priority tasks: if there are available

computing slots for low priority tasks, these are used to run these high medium tasks,

leaving only one computing slot empty for each of the medium/low priority tasks.

❖ Each time a task is started to run, TPC updates its status in the CE (ActiveActionStatus), so

that in the next poll iteration these won’t be selected.

❖ Once a task is finished, TPC updates its status in the CE to CompletedActionStatus.

With this procedure we ensure a balanced use of the computational resources by the TPC. We define

how many resources will be dedicated to each priority class, while at the same time we avoid that

the system resources assigned to lower priority tasks are not used.

3.3.2.3 Error Handling and Recovery

In the case that an algorithm fails to complete the execution, we need a mechanism to recover from

these errors. There are two categories of errors that can be captured; the errors caused by the TPC

and are irrespective of the running algorithm and the errors occurred during the execution of the

algorithms. For the first category, TPC handles its own errors and produces the corresponding error

message. For errors that occur in algorithms, TPC captures the exit status code and standard error

output of the algorithms. If an error code is reported by the algorithm, this is considered as an error

by the TPΨ, and the corresponding output is used as the error message.

Once an error is produced either by the TPC or the algorithm, TPΨ handles this error by

immediately updating the status of the corresponding CE node to FailedActionStatus and by adding

to this node additional information by providing the error message along with the origin (i.e. TPC or

algorithm), thus all the information about the error can be retrieved by the TPC or algorithm

maintainer. Once the algorithm or TPL maintainer has fixed the error, the updated TPL instance can

query the job nodes with a FailedActionStatus and rerun the failed jobs.

3.3.3 Using TPC out-of-the-box

TPC algorithm definition in section 3.2 imposes a certain format of the algorithms that can be run.

Each algorithm must have a certain number of inputs, outputs that correspond to CE nodes, as well

as the parameters. Although this is the case for the majority of the algorithms, TPC allows a more

flexible way to integrate an algorithm without the explicit use of inputs and outputs. In this case, the

algorithm maintainer developer can use TPC parameters in order to pass the necessary information

to the algorithm. For example, the unique identifier of a CE node can be passed as a parameter. In

this case, it is the responsibility of the algorithm to query the CE for this node, download the

corresponding data that this node refers to, do the processing, store the data etc.

TR-D5.3-TROMPA Processing Library v2

26

3.4 Data Privacy

3.4.1 Access of data stored in Solid Pods

In some situations, we want to be able to process data with the TPC that is not publically available.

For example, this could include personal rehearsals performed by piano players in D6.5. In this case,

the pilot allows users to store their rehearsals in a private Solid Pod (See Deliverable 5.1 for a brief

description of the use of Solid Pods in TROMPA). In this case we need a process to deliver private files

to the TPC for processing and to return the results of the algorithm back to the user’s Solid Pod. Solid

is based on open authentication technologies, including OpenID Connect . This standard allows24

users to delegate permissions to external applications to have access to read from and write to

private resources in a Solid pod. We implemented an authentication workflow which allows the TPC

to request permission from a user to access such private resources . When a user grants permission25

to the TPC, authentication tokens are stored in local storage. If an algorithm requires access to

private resources the TPC will generate a temporary token granting the algorithm access to only this

specific user’s Solid Pod.

Figure 3.2 OpenID Connect workflow asking a user to grant permission to the TPC to private data in

their Solid Pod

3.4.2 Encryption

We support two types of encryptions in order to handle private data: encryption of data, and

encryption of URIs. Both encryption/decryption we use the symmetric (also known as “secret key”)

authenticated cryptography, using the Fernet python library .26

❖ Encryption of data: We provide the capability of encryption of the input data. The main

problem was that we wanted to store private data in the CE. However all nodes in the CE are

visible, and in this case the URI of the private data would be visible through the CE. As a

solution we incorporated the encryption of this private data, so that only the TPC and the

use case could access the data of this user. This was done before the integration of Solid Pods

so the functionality is not currently used. However we kept it in order to encrypt Solid Pod

URIs (see below).

26 https://cryptography.io/en/latest/fernet.html

25 https://github.com/trompamusic/solid-oidc-app-permission

24 https://openid.net/connect

TR-D5.3-TROMPA Processing Library v2

27

https://cryptography.io/en/latest/fernet.html
https://github.com/trompamusic/solid-oidc-app-permission
https://openid.net/connect

❖ Encryption of URIs: Although the integration of Solid Pods described above satisfies the need

of securely storing and processing private data, there is still some minor leak of personal

information; since most of the Solid Pod URIs contain implicit information about the user

(e.g., Pod URI contains the username), we used the encryption method described above in

order to encrypt the Solid Pod URIs, providing a 2nd security layer of data privacy.

4. Implementation
There are two families of algorithms that are run under the context of TPC. The first is a certain

collection of algorithms that are run on certain types of the data in the CE, as for example extract the

tempo of an audio file or detect its emotion, convert a scanned image to MEI file, or to assess the

performance of a choir singer. These algorithms serve as processes to use cases or other application

contexts (e.g. other tools). The second consists of processes related more to the curation of the data

in the CE, as for example data importers from external repositories. In the following table we

summarize the processes of the two categories. An overview is presented in Table 4.1, along with a

description and relation to the use cases.

Algorithm / tool Description Use case / application
context

Algorithms

Extraction of
Baseline Features

Comprises a set of baseline audio descriptor
algorithms that are run on audio files.

CE enrichment

Rhythm
descriptors

Contains algorithms for the rhythm description of
audio files as well as a human-in-the-loop method
for annotating beats

Annotator tool

Active learning

for emotion

recognition

Active learning for music emotion recognition is to

allow the classification models to improve with

new annotations from particular users.

Music enthusiasts

Emotion-based

Music

Recommendation

The recommended tracks are provided analyzing

previous users’ annotations, where tracks are

listenable through a player presenting additionally

a short explanation of part of the features used in

the MER models.

Music enthusiasts

Singing

Performance

Assessment

Uses information from the piece's score and pitch

descriptors from the actual performance to

calculate the average deviation of the singers'

pitch from the reference

Choirs use case

TR-D5.3-TROMPA Processing Library v2

28

Performance to

score alignment

Used to align MIDI piano performances recorded

by users of D6.5 (Working prototype for

instrumental players) with MEI score encodings.

Piano players

Image to MEI

conversion

Detects music measure from a score image as well

as other symbols (systems, pauses etc) and creates

a MEI file encoding that information.

Orchestras use case

Data Importers

IMSL Importer We import metadata for composers,works, score
images, and score encodings from imslp.org.

Specialised importer, all

use cases

CPDL Importer We import metadata for composers, works, and

score encodings from cpdl.org.

Specialised importer,

singers use case

Muziekweb

Importer

For each track in the Music Enthusiasts use case ,27

we import an AudioObject which is linked to a

MusicComposition and one or several Persons to

the CE

Specialised importer,

music enthusiasts use

case

GitHub MEI
scores importer

Importer for MEI score encodings generated

during the TROMPA project, stored in the

trompamusc-encodings GitHub organisation. This28

includes a number of transcriptions of Beethoven

and other piano works for seeding an initial

repertoire for the working prototype for

instrumental players

instrumental players,

scholars

Humdrum scores
importer

Another source of scores encoded in the

Humdrum format is used in the working prototype

for music scholars

music scholars

Data importer This importer allows anyone in the consortium to

import data into the CE from one of the supported

sources. The algorithm takes as input a data source

(e.g. MusicBrainz, Wikidata, IMSLP), and a specific

identifier for an item in that data source.

General data importer,

all use cases

IMSLP MusicXML
file

Identifies the MusicXML file inside a zip archive of

scores available on IMSLP.

Data importer fix

28 https://github.com/trompamusic-encodings

27 https://ilde.upf.edu/trompa/

TR-D5.3-TROMPA Processing Library v2

29

https://github.com/trompamusic-encodings
https://ilde.upf.edu/trompa/

MusicXML/Humd
rum to MEI
converter

Converts MusicXML and Humdrum scores that

have been imported to the CE to MEI using

Verovio.

All use cases

Table 4.1. A list of the algorithms encapsulated in the TPC along with a short description and relation

to the use cases / application context.

4.1 Algorithms encapsulated and relation to the use cases

In this section we provide details of the algorithms run as TPC processes.

4.1.1 - Extraction of Audio Descriptors

We extract some baseline features from audio files, including frame based features and harmonic

descriptors. A detailed description of these features can be found in deliverable D3.2 - Music

Description , Sections 2.2.1 and 2.2.2.29

Inputs, outputs, interactions with the CE

The algorithm takes as input a specific audio file, and outputs a JSON file with all the extracted

features. Apart from the conventional input/output interaction with the CE, there is no additional

interaction with it.

Implementation details

For the extraction of these features we deploy Essentia. Essentia [1] is a C++ library with Python

bindings for audio analysis, description, and synthesis. The library contains a collection of various

algorithms which implement standard digital signal processing blocks, statistical characterization of

data, and a large set of spectral, temporal, tonal and high-level music descriptors. For the TPL we use

the provided docker images .30

4.1.2 - Rhythm Descriptors

We extract rhythm descriptors from either audio or MIDI data. These descriptors include beat

locations, tempo, and time signature. Moreover we provide a human-in-the-loop mechanism for

estimating the beats. The user can provide some manual annotation of beats; consequently the beat

estimation algorithm will consider these manual annotated beats for a better automatic estimation

of beats for the rest of a piece. This is done in conjunction with the annotation tools described in

Deliverable D5.5 - Annotation Tools .31

Inputs, outputs, interactions with the CE

The algorithms take as input either an AudioObject (in the case of audio files) or a DigitalDocument

(in the case of MIDI files). In the case of providing partial human annotations for estimating the beat,

31 https://trompamusic.eu/deliverables/TR-D5.5-Annotation_Tools_v2.pdf

30 https://hub.docker.com/r/mtgupf/essentia

29 https://trompamusic.eu/deliverables/TR-D3.2-Music_Description_v2.pdf

TR-D5.3-TROMPA Processing Library v2

30

https://trompamusic.eu/deliverables/TR-D5.5-Annotation_Tools_v2.pdf
https://hub.docker.com/r/mtgupf/essentia
https://trompamusic.eu/deliverables/TR-D3.2-Music_Description_v2.pdf

the input to the algorithm is both an AudioObject and a DigitalDocument (containing the manual

annotations).

Implementation details

We deployed several algorithms from the state-of-the-art as well as algorithms developed during

TROMPA as described in D3.2. All these algorithms are packaged in a single Docker image.

4.1.3 - Active learning for emotion recognition

Active learning for music emotion recognition allows classification models to improve with new

annotations from particular users. In general, we implemented the strategy of query by committee in

which 5 classification models are used to produce prediction probabilities of data instances which

have not been annotated. In short, uncertainty sampling using entropy is used over the prediction

probabilities of all classifiers, in order to measure the uncertainty produced by particular predictions:

instances with low entropy are assumed to be the most informative, while low entropy highlights the

least informative instances that should be annotated by our users.

Inputs, outputs, interactions with the CE

The TROMPA-MER algorithm offers 5 EntryPoints to the CE: to create and copy initialized models for32

a newly registered user, to extract emotionally-relevant acoustic features from audio, to perform

classwise predictions from the features extracted from an audio file, to get the hard tracks to be

annotated (i.e., least informative data instances), and to retrain the model for each particular user.

We clarify each function as follows:

❖ Create user model: this method uses the unique user identifier from the TROMPA Music

Enthusiasts Pilot and creates an internal directory with pre-trained models.

❖ Extract features from audio: this method inputs audio (as MP3 or WAV) in order to use the

OpenSmile C++ software and extract emotionally-relevant acoustic features. The IS13 feature

set has been widely used for speech, music and sound emotion recognition. The output of

the method is a CSV file with 65 acoustic features (which are later averaged over 1 second

with a 50% overlap, mean and standard deviation of each acoustic feature and their first

derivatives are extracted in order to produce 260 features).

❖ Predict emotion: this method input the CSV feature file extracted in the previous method

and loads a particular model (in PKL format) to produce framewise predictions for class and

probabilities (JSON file). The obtained prediction file contains: framewise output

probabilities for each class (“output_probs”), the mean over time of all probabilities

(“mean_probs”), the prediction with highest probability (“highest_prob_quad”), the

framewise class predictions (“output_predictions”), the frequency of each class over all

frames (“freq_pred”) and the mode of the classes predictions (“mode_quad”).

❖ Get hard tracks: this method requires that all the features from the unannotated dataset

have been previously extracted. In our case, we use the music in the Music Enthusiasts Pilot.

Since new annotations from a particular user will be used to retrain our models, the user

unique identifier is needed to select each user’s model. Additionally, the number of tracks to

annotate is an input parameter. The output of this algorithm is a JSON file which contains the

32 https://github.com/juansgomez87/active-learning

TR-D5.3-TROMPA Processing Library v2

31

https://github.com/juansgomez87/active-learning

number of the iteration - how many times has this method been called (“iteration”), a list

with the least informative songs (“queried”), and the list of remaining songs to be tested in

the next iteration (“next_pool”).

❖ Retrain model: this method uses the new annotations presented by a particular user to

retrain their committee of classifiers. The annotations are presented using the Muziekweb’s

song identifier and the particular class that the user has annotated (see sample JSON file). In

short, the new annotations are used to retrain all models in the committee.

Implementation details

The TROMPA-MER algorithm is currently written in Python but incorporates the OpenSmile software,

which is in C++.

4.1.4 - Emotion-based Music Recommendation

Music Recommendations have a twofold nature in the context of the TROMPA Music Enthusiast

use-case: 1) as method of incentivisation for retaining users’ when interacting with the pilot; 2) as

explanation of how track features are used while building music emotion recognition (MER)

algorithms (see Section 4.1.3). The recommended tracks are provided analyzing previous users’

annotations, where tracks are listenable through a player presenting additionally a short explanation

of part of the features used in the MER models. Consequently, every user receives a different

recommendation based on the previous annotations she provided.

Inputs, outputs, interactions with the CE

The TROMPA-ME Music Recommender System is implemented according to the following33

procedure:

❖ Get input. Three inputs are needed to compute the recommendation:

1. User unique identifier

2. Previous annotated tracks (extracted from the CE)

3. Previous recommended tracks (extracted from the CE)

❖ Analyze previous annotations. First, the quadrant-based emotion value is extracted for the

last five annotations. Second, the frequency of the emotion values is analyzed, and it is

returned the value most frequent within the user’s annotations.

❖ Retrieve recommendation. Within the pool of tracks included for the recommendations, the

ones corresponding to the emotion value extracted at the previous step are filtered. Within

those tracks, the previously recommended are filtered out. Lasty, they are ordered

ascendingly by a popularity indicator, and the resulting first track of the ordered list is

returned as output recommendation for the users.

Implementation details

The TROMPA recommendation algorithm is currently written in Python. The dependencies required

to run this algorithm are found in the requirements file available in the GitHub repository.

33https://github.com/trompamusic/music-enthusiast-rs

TR-D5.3-TROMPA Processing Library v2

32

https://github.com/trompamusic/music-enthusiast-rs

4.1.5 - Singing Performance Assessment

Choir singers often rehearse their parts individually at home. While this is an excellent way to

practice challenging parts in more depth, the conductor's figure is missing. Therefore, the singer does

not get any feedback about their performance. The intonation assessment algorithm uses34

information from the piece's score and pitch descriptors from the actual performance to calculate

the average deviation of the singers' pitch from the reference (i.e., the score).

Inputs, outputs, interaction with the CE

The intonation assessment algorithm’s usage is as follows:

python assessment.py list-of-input-params

In the following we provide the main details about the inputs, outputs, and implementation.

❖ Algorithm inputs35

➢ Start and end bars of the performance

➢ Estimated recording latency in seconds

➢ Performance’s pitch curve (JSON file from VoDesc)

➢ Score

➢ Score format (opt)

➢ Voice identifier

➢ Intonation deviation threshold (opt)

❖ I/O-related inputs

➢ Path to the output JSON file with the results

➢ Path to the INI config file

❖ Outputs

➢ The main function generates two output files (real filenames are given as input

parameters): output_filename.json and tpl_output.ini.

➢ The JSON file contains the actual assessment results: a Python dictionary with two

fields: pitchAssessment and error.

➢ The first one, 'pitchAssessment', contains a list of arrays with the assessment results

for each note in the form: [note_start_time, intonation_rating]. If the

process fails, the list will be empty.

➢ The field 'error' will contain a string with an error message if the process fails, and

will be None if it's successful.

❖ Algorithm functioning: In short, the singing performance (represented by the pitch contour)

is segmented into notes using the score information. The algorithm calculates the pitch

deviation between the performance and the score in cents, in a frame-wise manner. Finally,

an intonation rate for each note is calculated by averaging all deviation values within each

note.

Implementation details

35 https://github.com/helenacuesta/intonationAssessment#input-parameters

34 https://github.com/helenacuesta/intonationAssessment

TR-D5.3-TROMPA Processing Library v2

33

https://github.com/helenacuesta/intonationAssessment#input-parameters
https://github.com/helenacuesta/intonationAssessment

The TROMPA intonation assessment algorithm is written in Python. The required Python

dependencies are specified in the requirements file .36

4.1.6 - Score Alignment

The performance-to-score alignment algorithm (detailed in D3.5 - Multimodal music information

alignment) is used to align MIDI piano performances recorded by users of D6.5 (Working prototype

for instrumental players) with MEI score encodings. The workflow takes as input a reference (URI) to

an MEI file, a collection of MIDI events obtained by the D6.5 Web interface using the Web-MIDI API,

and an authentication token, and produces as output an RDF representation aligning instants in the

performance timeline with score elements in the MEI. This representation, alongside a MIDI file

recording the submitted MIDI events and a simple audio representation synthesised from the MIDI

information, are stored privately in the user’s Solid Pod.

Inputs, outputs, interaction with the CE

❖ Inputs

➢ MIDI events (JSON Object)

➢ URI to MEI file

➢ Authentication token

❖ Outputs

❖ Alignment (timeline) RDF in JSON-LD format

❖ Performance MIDI file

❖ Audio synthesis (MP3)

The workflow operates in the following steps, which are executed inside a Docker container - refer to

D3.5 for further details:

1. A Python script employing the mido module is used to write the MIDI events to a local

(performance) MIDI file, and to generate an audio synthesis.

2. The MEI score is downloaded from the supplied URI, and rendered as a (synthesised

reference) MIDI file using the Verovio renderer .37

3. The two MIDI files are aligned using the Symbolic Music Alignment Tool [1].

4. The generated “corresp” file is reconciled with the downloaded MEI file using an R script,

resulting in an alignment between the performance-MIDI and the MEI score (via the

synthesised reference MIDI) in MAPS (Matcher for Alignment of Performance and Score)

JSON format.

5. The MAPS JSON object is converted to an RDF (JSON-LD) representation using a Python script

employing the rdflib module.

A small separate algorithm can be invoked on user request to publish performances (i.e., the

outcomes of the performance-to-score alignment algorithm) to the CE. This algorithm is triggered by

the D6.5 Web client after modifying the corresponding Solid Pod data to be publicly readable. The

37 https://verovio.org

36 https://github.com/helenacuesta/intonationAssessment/blob/master/requirements.txt

TR-D5.3-TROMPA Processing Library v2

34

https://github.com/helenacuesta/intonationAssessment/blob/master/requirements.txt

algorithm takes a reference (URI) to the alignment data in the Pod as input, and creates a new Digital

Document node referencing the items in the Solid Pod within a List Item corresponding to the

performed MEI file. If such a List Item does not yet exist, it is instantiated prior to the creation of the

Digital Document.

4.1.7 - Visual Analysis of Scores

The algorithm for extracting a MEI file from a scanned score image is one of the main elements of

the Music Orchestras Use Case in order to facilitate the crowd-source OMR improvement. The

method is explained in detail in Deliverable D3.4 - Visual Analysis of Scores; it takes as input a

scanned image, it detects the measure of the scores along with other music notation symbols

(systems, pauses etc) and creates an MEI file encoding that information.

Inputs, outputs, interaction with the CE

The algorithm simply takes a single input that is the score image file and outputs a single output file.

The algorithm is CE agnostic, no interactions are made with the CE.

Implementation details

Due to mainly exploitation reasons, the OMR software is not released as an open source software.

Thus, the algorithm is run on a dedicated server maintained by PN. PN has a web service that one

can upload a scanned score image and retrieve the MEI file. The role of the TPC in this case does not

serve as a wrapper of this web service. It gets the input file contained in the CE, it uploads it to the

service, it downloads the result and stores the result to the TPC storage, creating at the same time

the corresponding CE nodes.

4.3 Automated metadata import

The CE provides a database that allows us to link to existing open data repositories. It’s important for

us to have a reference in the CE for the content that we wish to work with in the project. This allows

us to easily search data from multiple resources at the same time using the Multimedia Component,

and also allows us to easily identify resources that are processed using algorithms in the TPC. In

order to populate the CE, we developed a data importer which can copy references to data from

many repositories and load it in the CE . This data importer uses the functionality provided by the CE38

client (described in Section 2.3). The importer can load data from the following sources:

❖ Basic Person information from VIAF.org

❖ Basic Person information from Library of Congress (LoC)

❖ Basic Person information from ISNI

❖ Basic Person information from Worldcat

❖ Person information from Wikipedia and Wikidata, including biographical information if

present, photos if present, and a brief description of the person from the english Wikipedia

article about the person

❖ Person information from Musicbrainz.org, including biographical information, dates and

places of birth/death if present

38 https://github.com/trompamusic/ce-data-import

TR-D5.3-TROMPA Processing Library v2

35

https://github.com/trompamusic/ce-data-import

❖ MusicComposition information from Musicbrainz.org, including relationships to the

composer and relationships to sub-parts (for example separate movements of a symphony)

Objects that are created in the CE refer to the web resource that they were imported from. This

allows us to periodically check back to the resource to see if it has been updated since the last time

we imported it into the CE. Many of these sites include references to others in the list. For example,

MusicBrainz Artist objects have a rich set of relationships including links to VIAF, LoC, ISNI, WorldCat,

Wikidata, and IMSLP. In the case that we identify a relationship between two resources that

represent the same item they are joined in the CE using an exactMatch relationship, allowing us to39

identify that the nodes refer to the same natural person or composition. As a goal of the TROMPA

project is to contribute back to these open repositories, in the case that we further identify

relationships that don’t exist on these external sites, we can subsequently contribute this

information back to these repositories using the relevant data submission process for each site.

4.3.1 - Specialised importers

In order to support the specific needs of TROMPA’s different use-case client applications, we also

developed some importers for more specialised websites:

IMSLP: We import metadata for composers, works, score images, and score encodings from

imslp.org. For use in the Singers prototype (see Deliverable 6.6), we imported compositions from

IMSLP’s “For unaccompanied chorus” category when they included transcriptions in MusicXML40

format. For these compositions we imported metadata about the composer and work, a reference to

the score (a MediaObject), and a reference to PDF files that were generated from the score file.

IMSLP hides files behind a copyright disclaimer, as copyright law throughout the world determines

that some files are only available in some jurisdictions. The disclaimer advises people to ensure that

the copyright status of the file is known in their country. In order to not circumvent this warning, we

don’t include a direct link to scores from IMSLP in the CE. Rather, we store a permanent link that

references the copyright disclaimer page for the score. Users of the CE can automatically accept the

disclaimer in order to download the contents of each file.

CPDL: We import metadata for composers and works from cpdl.org. For the singers prototype we

imported works from the 4-part choral music category which also have MusicXML transcriptions, as41

well as the PDF files generated from these scores. MediaObject nodes are created in the CE to

represent these scores, and they are linked to the relevant MusicComposition objects.

Muziekweb: For each track in the Music Enthusiasts use case , we import an AudioObject which is42

linked to a MusicComposition and one or several Persons to the CE . A Person is generated with the43

information from Muziekweb and additional Person objects depending on the external links found in

the Muziekweb API: ISNI, VIAF, MusicBrainz, Wikidata, and Wikipedia.

MEI encodings: A number of transcriptions of Beethoven and other piano works were transcribed as

part of Deliverable 5.2 (section 2.2) for the purpose of seeding an initial repertoire for the working

prototype for instrumental players (D6.5). These transcriptions were made from scores available on

IMSLP. We imported information about the composition, the original PDF source, and information

43 Stored at https://github.com/trompamusic/ce-import-muziekweb

42 https://ilde.upf.edu/trompa/

41 https://www.cpdl.org/wiki/index.php/Category:4-part_choral_music

40 https://imslp.org/wiki/Category:For_unaccompanied_chorus

39 https://www.w3.org/2009/08/skos-reference/skos.html#exactMatch

TR-D5.3-TROMPA Processing Library v2

36

https://github.com/trompamusic/ce-import-muziekweb
https://ilde.upf.edu/trompa/
https://www.cpdl.org/wiki/index.php/Category:4-part_choral_music
https://imslp.org/wiki/Category:For_unaccompanied_chorus
https://www.w3.org/2009/08/skos-reference/skos.html#exactMatch

about the MEI transcription . The PDF and MEI nodes were linked to reflect the relationship that44

indicated that the MEI file was transcribed from the PDF.

Humdrum scores: Another source of scores encoded in the Humdrum[2] format is used in the

working prototype for music scholars (Deliverable 6.3). We import these scores as MediaObject

nodes, and link them to MusicComposition and Person nodes imported from MusicBrainz.

4.3.2 - TPC algorithms supporting data import

WIthin the scope of automated metadata import, we have implemented some TPC algorithms to

streamline the process of importing and converting data. The source code for these algorithms

makes up a part of the ce-data-importer source code.

Data importer: This importer allows anyone in the consortium to import data into the CE from one of

the supported sources. The algorithm takes as input a data source (e.g. MusicBrainz, Wikidata,

IMSLP), and a specific identifier for a resource in that data source. The algorithm performs the import

for the given item, loading it into the CE along with references to any other data sources that are

linked from the specified item.

MusicXML file path for IMSLP: On IMSLP, MusicXML scores are distributed in a zip file containing the

score in a number of different formats. In order to store which file in the zip archive is the MusicXML

file, we use the Archive and Package (arcp) URI scheme to identify the relevant file, and store this45

URI in the related MediaObject’s contentURL field. Subsequent tasks that need a MusicXML file can

read the file path from this field. We automatically run this algorithm on any MediaObject nodes that

are created with MusicXML scores from IMSLP during the IMSLP import.

MusicXML/Humdrum to MEI converter: For MusicXML and Humdrum files imported from external

sources (e.g. IMSLP and CPDL), we used the Verovio toolkit[3] to convert these to MEI. The resulting

MEI files are stored in the TPL’s minio instance, and are publicly available online. The converter

creates a new MediaObject node representing the MEI file, and links it to the MusicXML node with

the wasDerivedFrom relationship, and to the original MusicComposition node. We use the TPL

functionality to automatically run this conversion on any new MusicXML MediaObject nodes that are

added to the CE.

4.4 Implementation considerations

Currently TPL is run on a UPF-MTG server. We have assigned 9 processors to the TPC, 4, 2, 2 and 1

processes respectively for high/medium/low/ priority and failed processes. As mentioned, we

provide a minio server to store generated content. The TPC, as well as all algorithms, are

encapsulated in Docker containers.

5. Conclusion
In this deliverable we described in detail the final version TROMPA Processing Library. Rather than

being a single piece of software, TROMPA Processing Library is a collection of tools, software

components and CE functionalities that allow the interaction of WP3 components and other tools

such as data importers with the CE data. We presented the details of the mechanism for defining

45 https://s11.no/2018/arcp.html#hash-based

44 Stored at https://github.com/trompamusic-encodings

TR-D5.3-TROMPA Processing Library v2

37

https://s11.no/2018/arcp.html#hash-based
https://github.com/trompamusic-encodings

tasks on the CE schema, the multimodal component, the TROMPA Processing Component that

includes the scheduling and queuing mechanism, the storage of result data as well as the automatic

triggering of algorithms on new nodes in the CE, as well as implementation details of the algorithms

that have been integrated in the CE.

The proposed architecture of the TPC is flexible, is easy to scale since it can be run in multiple

machines simultaneously, and it is almost independent of software / hardware requirements since all

algorithms and the TPC iself are distributed as Docker images. The Multimodal Component on the

other hand, it offers a user-friendly interface to explore the CE data that is integrated in some of the

pilots.

All the components of the TPL are open source and their final versions corresponding to this

deliverable are deposited in the Github repository of TROMPA. However since there are two more

months remaining for testing the pilots till the end of the project, these components are subject to

possible changes for bug fixes that might appear, minor improvements etc.

5. References

5.1 Written references

[1] Eita Nakamura, Kazuyoshi Yoshii, Haruhiro Katayose. (2017).Performance Error Detection and

Post-Processing for Fast and Accurate Symbolic Music Alignment. In Proceedings of the 18th

International Society for Music Information Retrieval Conference, pp. 347-353, 2017

[2] Huron, D. (2002). Music information processing using the Humdrum toolkit: Concepts, examples,

and lessons. Computer Music Journal, 26(2), pp. 11-26.

[3] Pugin, Laurent, Rodolfo Zitellini, and Perry Roland. (2014). "Verovio: A library for Engraving MEI

Music Notation into SVG." In Proceedings of the 15th International Society for Music Information

Retrieval Conference, pp. 107-112.

5.2 List of abbreviations

Abbreviation Description

UPF University Pompeu Fabra

TPL TROMPA Processing Library

CE Contributor Environment

WP Work Package

TPC TROMPA Processing Component

PCP Pitch Class Profiles

MMC Multimodal Component

TR-D5.3-TROMPA Processing Library v2

38

